في هذه الورقة، نصف نظامنا المستخدم في مهمة Semeval 2021 7: hahackathon: الكشف عن الفكاهة والجريمة.استخدمنا نهجا بسيطا للضبط باستخدام نماذج لغة مدربة مسبقا مختلفة (PLMS) لتقييم أدائها للكشف عن الفكاهة والجريمة.بالنسبة لمهام الانحدار، بلغنا متوسط عدد النماذج المختلفة التي تؤدي إلى أداء أفضل من النماذج الأصلية.شاركنا في جميع المساحات الفرعية.تم تصنيف نظامنا الأفضل أداء في المرتبة 4 في SubTask 1-B، 8 في SubTask 1-C، 12 في SubTask 2، وأداء جيدا في التركيز 1-A.نوضح نتائج شاملة أخرى باستخدام نماذج لغة مدربة مسبقا مسبقا والتي ستساعد على أنها خطوط أساس للعمل في المستقبل.
In this paper, we describe our system used for SemEval 2021 Task 7: HaHackathon: Detecting and Rating Humor and Offense. We used a simple fine-tuning approach using different Pre-trained Language Models (PLMs) to evaluate their performance for humor and offense detection. For regression tasks, we averaged the scores of different models leading to better performance than the original models. We participated in all SubTasks. Our best performing system was ranked 4 in SubTask 1-b, 8 in SubTask 1-c, 12 in SubTask 2, and performed well in SubTask 1-a. We further show comprehensive results using different pre-trained language models which will help as baselines for future work.
References used
https://aclanthology.org/
This paper presents our system for the Quantity span identification, Unit of measurement identification and Value modifier classification subtasks of the MeasEval 2021 task. The purpose of the Quantity span identification task was to locate spans of
This paper discusses different approaches to the Toxic Spans Detection task. The problem posed by the task was to determine which words contribute mostly to recognising a document as toxic. As opposed to binary classification of entire texts, word-le
This paper presents the DuluthNLP submission to Task 7 of the SemEval 2021 competition on Detecting and Rating Humor and Offense. In it, we explain the approach used to train the model together with the process of fine-tuning our model in getting the
This paper introduces the system description of the hub team, which explains the related work and experimental results of our team's participation in SemEval 2021 Task 7: HaHackathon: Detecting and Rating Humor and Offense. We successfully submitted
This paper describes our submission to SemEval-2021 Task 1: predicting the complexity score for single words. Our model leverages standard morphosyntactic and frequency-based features that proved helpful for Complex Word Identification (a related tas