Do you want to publish a course? Click here

ODIST: Open World Classification via Distributionally Shifted Instances

يتقيد: تصنيف العالم المفتوح عبر المثيلات التي تحولت تدريجيا

170   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this work, we address the open-world classification problem with a method called ODIST, open world classification via distributionally shifted instances. This novel and straightforward method can create out-of-domain instances from the in-domain training instances with the help of a pre-trained generative language model. Experimental results show that ODIST performs better than state-of-the-art decision boundary finding method.



References used
https://aclanthology.org/
rate research

Read More

We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web page s (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.10, compared to the human upper bound of 75.45, indicating the difficulty of the setup and a large room for improvement.
Sentence-level Quality estimation (QE) of machine translation is traditionally formulated as a regression task, and the performance of QE models is typically measured by Pearson correlation with human labels. Recent QE models have achieved previously -unseen levels of correlation with human judgments, but they rely on large multilingual contextualized language models that are computationally expensive and make them infeasible for real-world applications. In this work, we evaluate several model compression techniques for QE and find that, despite their popularity in other NLP tasks, they lead to poor performance in this regression setting. We observe that a full model parameterization is required to achieve SoTA results in a regression task. However, we argue that the level of expressiveness of a model in a continuous range is unnecessary given the downstream applications of QE, and show that reframing QE as a classification problem and evaluating QE models using classification metrics would better reflect their actual performance in real-world applications.
Open-domain chatbots are supposed to converse freely with humans without being restricted to a topic, task or domain. However, the boundaries and/or contents of open-domain conversations are not clear. To clarify the boundaries of openness'', we cond uct two studies: First, we classify the types of speech events'' encountered in a chatbot evaluation data set (i.e., Meena by Google) and find that these conversations mainly cover the small talk'' category and exclude the other speech event categories encountered in real life human-human communication. Second, we conduct a small-scale pilot study to generate online conversations covering a wider range of speech event categories between two humans vs. a human and a state-of-the-art chatbot (i.e., Blender by Facebook). A human evaluation of these generated conversations indicates a preference for human-human conversations, since the human-chatbot conversations lack coherence in most speech event categories. Based on these results, we suggest (a) using the term small talk'' instead of open-domain'' for the current chatbots which are not that open'' in terms of conversational abilities yet, and (b) revising the evaluation methods to test the chatbot conversations against other speech events.
Recent advances in open-domain QA have led to strong models based on dense retrieval, but only focused on retrieving textual passages. In this work, we tackle open-domain QA over tables for the first time, and show that retrieval can be improved by a retriever designed to handle tabular context. We present an effective pre-training procedure for our retriever and improve retrieval quality with mined hard negatives. As relevant datasets are missing, we extract a subset of Natural Questions (Kwiatkowski et al., 2019) into a Table QA dataset. We find that our retriever improves retrieval results from 72.0 to 81.1 recall@10 and end-to-end QA results from 33.8 to 37.7 exact match, over a BERT based retriever.
It has long been recognized that suffixing is more common than prefixing in the languages of the world. More detailed statistics on this tendency are needed to sharpen proposed explanations for this tendency. The classic approach to gathering data on the prefix/suffix preference is for a human to read grammatical descriptions (948 languages), which is time-consuming and involves discretization judgments. In this paper we explore two machine-driven approaches for prefix and suffix statistics which are crude approximations, but have advantages in terms of time and replicability. The first simply searches a large collection of grammatical descriptions for occurrences of the terms prefix' and suffix' (4 287 languages). The second counts substrings from raw text data in a way indirectly reflecting prefixation and suffixation (1 030 languages, using New Testament translations). The three approaches largely agree in their measurements but there are important theoretical and practical differences. In all measurements, there is an overall preference for suffixation, albeit only slightly, at ratios ranging between 0.51 and 0.68.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا