في هذا العمل، نصف جهودنا في تحسين مجموعة متنوعة من اللغات الناتجة عن نظام NLG القائم على القواعد للصحافة الآلية.نقدم اقترابين: واحد استنادا إلى إدراج كلمات جديدة تماما في جمل تم إنشاؤها من القوالب، وآخر بناء على استبدال الكلمات بالمرادفات.تشير نتائجنا الأولية من التقييم البشري الذي أجري باللغة الإنجليزية إلى أن هذه الأساليب تحسن بنجاح من مجموعة متنوعة من اللغة دون تعديل معنى الجملة.ونحن نقدم أيضا اختلافات في الأساليب المطبقة على لغات الموارد المنخفضة، محاكاة هنا باستخدام الفنلندية، حيث يتم تسخير شركات التفاوية المحاذاة عبر اللغات للاستفادة من الموارد اللغوية بلغة عالية الموارد.يشير التقييم البشري إلى أنه بينما تظهر الأساليب المقترحة إمكانية في حالة الموارد المنخفضة، هناك حاجة إلى عمل إضافي لتحسين أدائها.
In this work, we describe our efforts in improving the variety of language generated from a rule-based NLG system for automated journalism. We present two approaches: one based on inserting completely new words into sentences generated from templates, and another based on replacing words with synonyms. Our initial results from a human evaluation conducted in English indicate that these approaches successfully improve the variety of the language without significantly modifying sentence meaning. We also present variations of the methods applicable to low-resource languages, simulated here using Finnish, where cross-lingual aligned embeddings are harnessed to make use of linguistic resources in a high-resource language. A human evaluation indicates that while proposed methods show potential in the low-resource case, additional work is needed to improve their performance.
References used
https://aclanthology.org/
Data filtering for machine translation (MT) describes the task of selecting a subset of a given, possibly noisy corpus with the aim to maximize the performance of an MT system trained on this selected data. Over the years, many different filtering ap
In this work, we present a method for content selection and document planning for automated news and report generation from structured statistical data such as that offered by the European Union's statistical agency, EuroStat. The method is driven by
Generative adversarial networks (GANs) have succeeded in inducing cross-lingual word embeddings - maps of matching words across languages - without supervision. Despite these successes, GANs' performance for the difficult case of distant languages is
Detecting lexical semantic change in smaller data sets, e.g. in historical linguistics and digital humanities, is challenging due to a lack of statistical power. This issue is exacerbated by non-contextual embedding models that produce one embedding
Multilingual language models exhibit better performance for some languages than for others (Singh et al., 2019), and many languages do not seem to benefit from multilingual sharing at all, presumably as a result of poor multilingual segmentation (Pyy