Do you want to publish a course? Click here

Clustering Monolingual Vocabularies to Improve Cross-Lingual Generalization

تجميع المفردات الأولية لتحسين التعميم عبر اللغات

631   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Multilingual language models exhibit better performance for some languages than for others (Singh et al., 2019), and many languages do not seem to benefit from multilingual sharing at all, presumably as a result of poor multilingual segmentation (Pyysal o et al., 2020). This work explores the idea of learning multilingual language models based on clustering of monolingual segments. We show significant improvements over standard multilingual segmentation and training across nine languages on a question answering task, both in a small model regime and for a model of the size of BERT-base.



References used
https://aclanthology.org/
rate research

Read More

Many recent works use consistency regularisation' to improve the generalisation of fine-tuned pre-trained models, both multilingual and English-only. These works encourage model outputs to be similar between a perturbed and normal version of the inpu t, usually via penalising the Kullback--Leibler (KL) divergence between the probability distribution of the perturbed and normal model. We believe that consistency losses may be implicitly regularizing the loss landscape. In particular, we build on work hypothesising that implicitly or explicitly regularizing trace of the Fisher Information Matrix (FIM), amplifies the implicit bias of SGD to avoid memorization. Our initial results show both empirically and theoretically that consistency losses are related to the FIM, and show that the flat minima implied by a small trace of the FIM improves performance when fine-tuning a multilingual model on additional languages. We aim to confirm these initial results on more datasets, and use our insights to develop better multilingual fine-tuning techniques.
Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is genera lly acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for low-resource languages. In this paper, we propose Ernie-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that Ernie-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks. The codes and pre-trained models will be made publicly available.
Although neural sequence-to-sequence models have been successfully applied to semantic parsing, they fail at compositional generalization, i.e., they are unable to systematically generalize to unseen compositions of seen components. Motivated by trad itional semantic parsing where compositionality is explicitly accounted for by symbolic grammars, we propose a new decoding framework that preserves the expressivity and generality of sequence-to-sequence models while featuring lexicon-style alignments and disentangled information processing. Specifically, we decompose decoding into two phases where an input utterance is first tagged with semantic symbols representing the meaning of individual words, and then a sequence-to-sequence model is used to predict the final meaning representation conditioning on the utterance and the predicted tag sequence. Experimental results on three semantic parsing datasets show that the proposed approach consistently improves compositional generalization across model architectures, domains, and semantic formalisms.
Transformers that are pre-trained on multilingual corpora, such as, mBERT and XLM-RoBERTa, have achieved impressive cross-lingual transfer capabilities. In the zero-shot transfer setting, only English training data is used, and the fine-tuned model i s evaluated on another target language. While this works surprisingly well, substantial variance has been observed in target language performance between different fine-tuning runs, and in the zero-shot setup, no target-language development data is available to select among multiple fine-tuned models. Prior work has relied on English dev data to select among models that are fine-tuned with different learning rates, number of steps and other hyperparameters, often resulting in suboptimal choices. In this paper, we show that it is possible to select consistently better models when small amounts of annotated data are available in auxiliary pivot languages. We propose a machine learning approach to model selection that uses the fine-tuned model's own internal representations to predict its cross-lingual capabilities. In extensive experiments we find that this method consistently selects better models than English validation data across twenty five languages (including eight low-resource languages), and often achieves results that are comparable to model selection using target language development data.
Social media is notoriously difficult to process for existing natural language processing tools, because of spelling errors, non-standard words, shortenings, non-standard capitalization and punctuation. One method to circumvent these issues is to nor malize input data before processing. Most previous work has focused on only one language, which is mostly English. In this paper, we are the first to propose a model for cross-lingual normalization, with which we participate in the WNUT 2021 shared task. To this end, we use MoNoise as a starting point, and make a simple adaptation for cross-lingual application. Our proposed model outperforms the leave-as-is baseline provided by the organizers which copies the input. Furthermore, we explore a completely different model which converts the task to a sequence labeling task. Performance of this second system is low, as it does not take capitalization into account in our implementation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا