اكتشاف التغيير الدلالي المعجمي في مجموعات بيانات أصغر، على سبيل المثالفي اللغويات التاريخية والعلوم الإنسانية الرقمية، تحديا بسبب نقص القوة الإحصائية.يتم تفاقم هذه المشكلة عن طريق نماذج التضمين غير السياقية التي تنتج واحدة من التضمين لكل كلمة، وبالتالي، قم بإخفاء التباين الحاضر في البيانات.في هذه المقالة، نقترح نهجا لتقدير التحول الدلالي من خلال الجمع بين تضمين الكلمات السياقية مع الاختبارات الإحصائية القائمة على التقاطات.نحن نستخدم إجراء معدل الاكتشاف الخاطئ لمعالجة العدد الكبير من اختبارات الفرضيات التي يجري تنفيذها في وقت واحد.نوضح أداء هذا النهج في المحاكاة حيث تحقق بدقة عالية باستمرار عن طريق قمع إيجابيات كاذبة.كلفنا تحليل بيانات العالم الحقيقي من مهمة Semeval-2020 1 و Liverpool FC SubRedDit Corpus.نظرا لأنه من خلال أخذ التباين العينة في الاعتبار، يمكننا تحسين متانة تقديرات التحول الدلالي الفردي دون مهينة الأداء العام.
Detecting lexical semantic change in smaller data sets, e.g. in historical linguistics and digital humanities, is challenging due to a lack of statistical power. This issue is exacerbated by non-contextual embedding models that produce one embedding per word and, therefore, mask the variability present in the data. In this article, we propose an approach to estimate semantic shift by combining contextual word embeddings with permutation-based statistical tests. We use the false discovery rate procedure to address the large number of hypothesis tests being conducted simultaneously. We demonstrate the performance of this approach in simulation where it achieves consistently high precision by suppressing false positives. We additionally analyze real-world data from SemEval-2020 Task 1 and the Liverpool FC subreddit corpus. We show that by taking sample variation into account, we can improve the robustness of individual semantic shift estimates without degrading overall performance.
References used
https://aclanthology.org/
Identifying intertextual relationships between authors is of central importance to the study of literature. We report an empirical analysis of intertextuality in classical Latin literature using word embedding models. To enable quantitative evaluatio
We introduce a new approach for smoothing and improving the quality of word embeddings. We consider a method of fusing word embeddings that were trained on the same corpus but with different initializations. We project all the models to a shared vect
We present Query2Prod2Vec, a model that grounds lexical representations for product search in product embeddings: in our model, meaning is a mapping between words and a latent space of products in a digital shop. We leverage shopping sessions to lear
Word Embedding maps words to vectors of real numbers. It is derived from a large corpus and is known to capture semantic knowledge from the corpus. Word Embedding is a critical component of many state-of-the-art Deep Learning techniques. However, gen
While the production of information in the European early modern period is a well-researched topic, the question how people were engaging with the information explosion that occurred in early modern Europe, is still underexposed. This paper presents