في هذه الورقة، نقدم إشتاليا، مكونا للتصور لاستكشاف المواضيع الزمنية في Text Corpora.يستخدم Temotopic استعارة الفسيفساء الزمنية لتقديم الموضوعات كجدول زمني من القضبان مكدسة جنبا إلى جنب مع الكلمات الرئيسية ذات الصلة لكل موضوع.يعمل التصور بمثابة نظرة عامة على التوزيع الزمني للمواضيع، إلى جانب محتويات الكلمات الرئيسية للموضوعات، والتي تدعم بشكل جماعي التفاعلات بالتفصيل عند الطلب مع نص المصدر للشرج.من خلال هذه التفاعلات واستخدام الضوء على الكلمات الرئيسية، يمكن استكشاف المحتوى المتعلق بكل موضوع وتغييره بمرور الوقت.
In this paper we present TeMoTopic, a visualization component for temporal exploration of topics in text corpora. TeMoTopic uses the temporal mosaic metaphor to present topics as a timeline of stacked bars along with related keywords for each topic. The visualization serves as an overview of the temporal distribution of topics, along with the keyword contents of the topics, which collectively support detail-on-demand interactions with the source text of the corpora. Through these interactions and the use of keyword highlighting, the content related to each topic and its change over time can be explored.
References used
https://aclanthology.org/
In this paper, we study the abstractive sentence summarization. There are two essential information features that can influence the quality of news summarization, which are topic keywords and the knowledge structure of the news text. Besides, the exi
Natural language processing (NLP) is often the backbone of today's systems for user interactions, information retrieval and others. Many of such NLP applications rely on specialized learned representations (e.g. neural word embeddings, topic models)
نتيجةً للتطور الهائل في العلوم والتكنولوجيا، والانتشار الواسع للإنترنت، باتت المعرفة البشرية في متناول كل شخص منا. لكن ومع هذا الكم الهائل من المعلومات، اصبح القارئ مشتتا بين مصادر عديدة تجعله يضيع في هذا الفضاء الواسع. انفجار المعلومات هذا تطلب وسائ
Recent research in opinion mining proposed word embedding-based topic modeling methods that provide superior coherence compared to traditional topic modeling. In this paper, we demonstrate how these methods can be used to display correlated topic mod
Building models for realistic natural language tasks requires dealing with long texts and accounting for complicated structural dependencies. Neural-symbolic representations have emerged as a way to combine the reasoning capabilities of symbolic meth