Do you want to publish a course? Click here

TeMoTopic: Temporal Mosaic Visualisation of Topic Distribution, Keywords, and Context

Telotopic: تصور الفسيفساء الزمني لتوزيع الموضوع والكلمات الرئيسية والسياق

529   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we present TeMoTopic, a visualization component for temporal exploration of topics in text corpora. TeMoTopic uses the temporal mosaic metaphor to present topics as a timeline of stacked bars along with related keywords for each topic. The visualization serves as an overview of the temporal distribution of topics, along with the keyword contents of the topics, which collectively support detail-on-demand interactions with the source text of the corpora. Through these interactions and the use of keyword highlighting, the content related to each topic and its change over time can be explored.



References used
https://aclanthology.org/
rate research

Read More

In this paper, we study the abstractive sentence summarization. There are two essential information features that can influence the quality of news summarization, which are topic keywords and the knowledge structure of the news text. Besides, the exi sting knowledge encoder has poor performance on sparse sentence knowledge structure. Considering these, we propose KAS, a novel Knowledge and Keywords Augmented Abstractive Sentence Summarization framework. Tri-encoders are utilized to integrate contexts of original text, knowledge structure and keywords topic simultaneously, with a special linearized knowledge structure. Automatic and human evaluations demonstrate that KAS achieves the best performances.
Natural language processing (NLP) is often the backbone of today's systems for user interactions, information retrieval and others. Many of such NLP applications rely on specialized learned representations (e.g. neural word embeddings, topic models) that improve the ability to reason about the relationships between documents of a corpus. Paired with the progress in learned representations, the similarity metrics used to compare representations of documents are also evolving, with numerous proposals differing in computation time or interpretability. In this paper we propose an extension to a specific emerging hybrid document distance metric which combines topic models and word embeddings: the Hierarchical Optimal Topic Transport (HOTT). In specific, we extend HOTT by using context-enhanced word representations. We provide a validation of our approach on public datasets, using the language model BERT for a document categorization task. Results indicate competitive performance of the extended HOTT metric. We furthermore apply the HOTT metric and its extension to support educational media research, with a retrieval task of matching topics in German curricula to educational textbooks passages, along with offering an auxiliary explanatory document representing the dominant topic of the retrieved document. In a user study, our explanation method is preferred over regular topic keywords.
نتيجةً للتطور الهائل في العلوم والتكنولوجيا، والانتشار الواسع للإنترنت، باتت المعرفة البشرية في متناول كل شخص منا. لكن ومع هذا الكم الهائل من المعلومات، اصبح القارئ مشتتا بين مصادر عديدة تجعله يضيع في هذا الفضاء الواسع. انفجار المعلومات هذا تطلب وسائ ل للسيطرة عليه تقوم بتنظيم هذه المعلومات وترتيبها تحت عناوين عريضة، وتتتبعها. من هنا بدء المجتمع التقني بالاتجاه نحو مجال جديد اطلق عليه اسم اكتشاف الموضوع وتتبعه. يطبق هذا المفهوم بشكل واسع في مجال شبكات التواصل الاجتماعي، الاخبار، المقالات العلمية وغيرها الكثير. ففي مجال الاخبار كثيرا ما ترى آلاف وكالات الاخبار تبث عشرات الاف القصص الاخبارية حول نفس الحدث، ما دفع البوابات الاخبارية وفي مقدمتها Google news لتطبيق نظام اكتشاف للموضوع وتتبعه. يعنى هذا النظام بمجموعة من المهام المعرفة من قبل منظمة DARPA، أولها مراقبة سيل من القصص النصية المتصلة لمعرفة الحدود الفاصلة بين كل قصة والاخرى، وتدعى تقطيع القصص، ثانيها مهمتها الاجابة على السؤال: هل تناقش قصتان معطاتان نفس الموضوع او الحدث؟ وتدعى اكتشاف الصلة. ثالثها معنية بمراقبة سيل من القصص لاكتشاف تلك التي تناقش موضوعا معرفا من قبل المستخدم، وتدعى بتتبع الموضوع. رابعها تهتم بالتعرف على القصص التي تناقش احداثا جديدة فور وصولها، وتدعى اكتشاف القصة الاولى. واخرها تدعى اكتشاف الموضوع، وهي مسؤولة عن فصل مجموعة من القصص المختلطة الى مواضيع، بدون اي معرفة مسبقة بهذه المواضيع، اي تجميع القصص التي تناقش موضوعا واحدا في نفس العنقود. نعمل من خلال هذا المشروع على تطبيق المهام الاربع الاخيرة وتقييمها. يتم استلام القصص في الزمن الحقيقي، اجراء معالجة مسبقة عليها (معالجة لغوية وغير ذلك)، ثم يتم تمثيل القصص بشكل اشعة وتوزين كلمات كل قصة، يتم بعدها اختيار مجموعة كلمات لتمثيل القصة. اما تمثيل المواضيع فنختبر اشكالا مختلفة، كالتمثيل الشعاعي او التمثيل بالقصص وغير ذلك. نناقش خلال هذا المشروع ايضاً استخدام معايير مختلفة لتمثيل القصص وقياس تشابهها، ونختبر استخدام عنوان القصة وتاريخها كمميزات بالإضافة الى مجموعة الكلمات. كما ونتحدث عن منهج خاص بنا لتقييس التشابهات بين القصص والتخفيف من تأثير عمليات اختيار العتبات في النظام، ونعرض التحسينات المذهلة التي يبديها هذا المنهج، والتي تمكن من بناء نظام اكتشاف موضوع وتتبعه، دون القلق حول تحديد العتبة اطلاقا، والذي لطالما كان يمثل التحدي الاكبر لهذا النوع من الانظمة. نتحدث عن تطبيقنا لخوارزميات العنقدة الاكثر تطورا في مهمة اكتشاف الموضوع، ونعرض كيفية قيامنا بتعديل مصفوفة التجاذب في خوارزمية العنقدة الطيفية المطروحة واستخدام طريقة تقييس مختلفة تم تكييفها مع حالة نظامنا، والتي ادت الى تحسين اداء العنقدة من 0.89 الى 0.97 مقاسا على F-measure
Recent research in opinion mining proposed word embedding-based topic modeling methods that provide superior coherence compared to traditional topic modeling. In this paper, we demonstrate how these methods can be used to display correlated topic mod els on social media texts using SocialVisTUM, our proposed interactive visualization toolkit. It displays a graph with topics as nodes and their correlations as edges. Further details are displayed interactively to support the exploration of large text collections, e.g., representative words and sentences of topics, topic and sentiment distributions, hierarchical topic clustering, and customizable, predefined topic labels. The toolkit optimizes automatically on custom data for optimal coherence. We show a working instance of the toolkit on data crawled from English social media discussions about organic food consumption. The visualization confirms findings of a qualitative consumer research study. SocialVisTUM and its training procedures are accessible online.
Building models for realistic natural language tasks requires dealing with long texts and accounting for complicated structural dependencies. Neural-symbolic representations have emerged as a way to combine the reasoning capabilities of symbolic meth ods, with the expressiveness of neural networks. However, most of the existing frameworks for combining neural and symbolic representations have been designed for classic relational learning tasks that work over a universe of symbolic entities and relations. In this paper, we present DRaiL, an open-source declarative framework for specifying deep relational models, designed to support a variety of NLP scenarios. Our framework supports easy integration with expressive language encoders, and provides an interface to study the interactions between representation, inference and learning.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا