Do you want to publish a course? Click here

Modeling Content and Context with Deep Relational Learning

نمذجة المحتوى والسياق مع التعلم العلائقية العميقة

323   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Building models for realistic natural language tasks requires dealing with long texts and accounting for complicated structural dependencies. Neural-symbolic representations have emerged as a way to combine the reasoning capabilities of symbolic methods, with the expressiveness of neural networks. However, most of the existing frameworks for combining neural and symbolic representations have been designed for classic relational learning tasks that work over a universe of symbolic entities and relations. In this paper, we present DRaiL, an open-source declarative framework for specifying deep relational models, designed to support a variety of NLP scenarios. Our framework supports easy integration with expressive language encoders, and provides an interface to study the interactions between representation, inference and learning.



References used
https://aclanthology.org/
rate research

Read More

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR ) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.
The exponential growth of the internet and social media in the past decade gave way to the increase in dissemination of false or misleading information. Since the 2016 US presidential election, the term fake news'' became increasingly popular and thi s phenomenon has received more attention. In the past years several fact-checking agencies were created, but due to the great number of daily posts on social media, manual checking is insufficient. Currently, there is a pressing need for automatic fake news detection tools, either to assist manual fact-checkers or to operate as standalone tools. There are several projects underway on this topic, but most of them focus on English. This research-in-progress paper discusses the employment of deep learning methods, and the development of a tool, for detecting false news in Portuguese. As a first step we shall compare well-established architectures that were tested in other languages and analyse their performance on our Portuguese data. Based on the preliminary results of these classifiers, we shall choose a deep learning model or combine several deep learning models which hold promise to enhance the performance of our fake news detection system.
Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic computation and memory requirements with respect to sequence length. Successful approaches to re duce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: It combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows self-attention with a sparse routing module based on online k-means while reducing the overall complexity of attention to O(n1.5d) from O(n2d) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity), as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192. We open-source the code for Routing Transformer in Tensorflow.1
Despite the recent successes of transformer-based models in terms of effectiveness on a variety of tasks, their decisions often remain opaque to humans. Explanations are particularly important for tasks like offensive language or toxicity detection o n social media because a manual appeal process is often in place to dispute automatically flagged content. In this work, we propose a technique to improve the interpretability of these models, based on a simple and powerful assumption: a post is at least as toxic as its most toxic span. We incorporate this assumption into transformer models by scoring a post based on the maximum toxicity of its spans and augmenting the training process to identify correct spans. We find this approach effective and can produce explanations that exceed the quality of those provided by Logistic Regression analysis (often regarded as a highly-interpretable model), according to a human study.
Deep reinforcement learning has shown great potential in training dialogue policies. However, its favorable performance comes at the cost of many rounds of interaction. Most of the existing dialogue policy methods rely on a single learning system, wh ile the human brain has two specialized learning and memory systems, supporting to find good solutions without requiring copious examples. Inspired by the human brain, this paper proposes a novel complementary policy learning (CPL) framework, which exploits the complementary advantages of the episodic memory (EM) policy and the deep Q-network (DQN) policy to achieve fast and effective dialogue policy learning. In order to coordinate between the two policies, we proposed a confidence controller to control the complementary time according to their relative efficacy at different stages. Furthermore, memory connectivity and time pruning are proposed to guarantee the flexible and adaptive generalization of the EM policy in dialog tasks. Experimental results on three dialogue datasets show that our method significantly outperforms existing methods relying on a single learning system.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا