Do you want to publish a course? Click here

SocialVisTUM: An Interactive Visualization Toolkit for Correlated Neural Topic Models on Social Media Opinion Mining

Socialvistum: مجموعة أدوات تصور تفاعلية لنماذج الموضوع العصبي المرتبطة بتعدين رأي وسائل التواصل الاجتماعي

402   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Recent research in opinion mining proposed word embedding-based topic modeling methods that provide superior coherence compared to traditional topic modeling. In this paper, we demonstrate how these methods can be used to display correlated topic models on social media texts using SocialVisTUM, our proposed interactive visualization toolkit. It displays a graph with topics as nodes and their correlations as edges. Further details are displayed interactively to support the exploration of large text collections, e.g., representative words and sentences of topics, topic and sentiment distributions, hierarchical topic clustering, and customizable, predefined topic labels. The toolkit optimizes automatically on custom data for optimal coherence. We show a working instance of the toolkit on data crawled from English social media discussions about organic food consumption. The visualization confirms findings of a qualitative consumer research study. SocialVisTUM and its training procedures are accessible online.



References used
https://aclanthology.org/
rate research

Read More

قمنا في هذا البحث باتباع نهج تحليل المشاعر المعتمد على المعجم لتحديد التوجه العام للطلاب، ايجابي او سلبي او محايد، اذ قمنا بداية ببناء معجم مشاعر انطلاقا من بعض المعاجم المعدة مسبقا ليتم اعتماده في عملية تحليل المشاعر، ثم قمنا بوضع نموذج يوجد رأي الط لاب العام بالاعتماد على المعجم السابق، يعالج النموذج الكتابي الكلمات التي تزيد من حدة المشاعر والرموز التعبيرية وبعض حالات النفي، وقمنا باضافة تفاعلات المستخدمين الأخرين مع المنشورات عند ايجاد التوجه العام بهدف اخذ أراء الطلاب الذين لم يعبروا عن أرائهم بنصوص مكتوبة.
This paper describes the Helsinki--Ljubljana contribution to the VarDial 2021 shared task on social media variety geolocation. Following our successful participation at VarDial 2020, we again propose constrained and unconstrained systems based on the BERT architecture. In this paper, we report experiments with different tokenization settings and different pre-trained models, and we contrast our parameter-free regression approach with various classification schemes proposed by other participants at VarDial 2020. Both the code and the best-performing pre-trained models are made freely available.
This paper describes the entry of the research group SINAI at SMM4H's ProfNER task on the identification of professions and occupations in social media related with health. Specifically we have participated in Task 7a: Tweet Binary Classification to determine whether a tweet contains mentions of occupations or not, as well as in Task 7b: NER Offset Detection and Classification aimed at predicting occupations mentions and classify them discriminating by professions and working statuses.
The framing of political issues can influence policy and public opinion. Even though the public plays a key role in creating and spreading frames, little is known about how ordinary people on social media frame political issues. By creating a new dat aset of immigration-related tweets labeled for multiple framing typologies from political communication theory, we develop supervised models to detect frames. We demonstrate how users' ideology and region impact framing choices, and how a message's framing influences audience responses. We find that the more commonly-used issue-generic frames obscure important ideological and regional patterns that are only revealed by immigration-specific frames. Furthermore, frames oriented towards human interests, culture, and politics are associated with higher user engagement. This large-scale analysis of a complex social and linguistic phenomenon contributes to both NLP and social science research.
Stance detection, which aims to determine whether an individual is for or against a target concept, promises to uncover public opinion from large streams of social media data. Yet even human annotation of social media content does not always capture stance'' as measured by public opinion polls. We demonstrate this by directly comparing an individual's self-reported stance to the stance inferred from their social media data. Leveraging a longitudinal public opinion survey with respondent Twitter handles, we conducted this comparison for 1,129 individuals across four salient targets. We find that recall is high for both Pro'' and Anti'' stance classifications but precision is variable in a number of cases. We identify three factors leading to the disconnect between text and author stance: temporal inconsistencies, differences in constructs, and measurement errors from both survey respondents and annotators. By presenting a framework for assessing the limitations of stance detection models, this work provides important insight into what stance detection truly measures.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا