Do you want to publish a course? Click here

Dependency Patterns of Complex Sentences and Semantic Disambiguation for Abstract Meaning Representation Parsing

أنماط الاعتمادية للجمل المعقدة والكفوال الدلالي لتحليل التمثيل التجريدي

275   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Abstract Meaning Representation (AMR) is a sentence-level meaning representation based on predicate argument structure. One of the challenges we find in AMR parsing is to capture the structure of complex sentences which expresses the relation between predicates. Knowing the core part of the sentence structure in advance may be beneficial in such a task. In this paper, we present a list of dependency patterns for English complex sentence constructions designed for AMR parsing. With a dedicated pattern matcher, all occurrences of complex sentence constructions are retrieved from an input sentence. While some of the subordinators have semantic ambiguities, we deal with this problem through training classification models on data derived from AMR and Wikipedia corpus, establishing a new baseline for future works. The developed complex sentence patterns and the corresponding AMR descriptions will be made public.



References used
https://aclanthology.org/
rate research

Read More

Synthesizing data for semantic parsing has gained increasing attention recently. However, most methods require handcrafted (high-precision) rules in their generative process, hindering the exploration of diverse unseen data. In this work, we propose a generative model which features a (non-neural) PCFG that models the composition of programs (e.g., SQL), and a BART-based translation model that maps a program to an utterance. Due to the simplicity of PCFG and pre-trained BART, our generative model can be efficiently learned from existing data at hand. Moreover, explicitly modeling compositions using PCFG leads to better exploration of unseen programs, thus generate more diverse data. We evaluate our method in both in-domain and out-of-domain settings of text-to-SQL parsing on the standard benchmarks of GeoQuery and Spider, respectively. Our empirical results show that the synthesized data generated from our model can substantially help a semantic parser achieve better compositional and domain generalization.
In this paper, we propose a globally normalized model for context-free grammar (CFG)-based semantic parsing. Instead of predicting a probability, our model predicts a real-valued score at each step and does not suffer from the label bias problem. Exp eriments show that our approach outperforms locally normalized models on small datasets, but it does not yield improvement on a large dataset.
AM dependency parsing is a method for neural semantic graph parsing that exploits the principle of compositionality. While AM dependency parsers have been shown to be fast and accurate across several graphbanks, they require explicit annotations of t he compositional tree structures for training. In the past, these were obtained using complex graphbank-specific heuristics written by experts. Here we show how they can instead be trained directly on the graphs with a neural latent-variable model, drastically reducing the amount and complexity of manual heuristics. We demonstrate that our model picks up on several linguistic phenomena on its own and achieves comparable accuracy to supervised training, greatly facilitating the use of AM dependency parsing for new sembanks.
Abstract Meaning Representation (AMR) is a graphical meaning representation language designed to represent propositional information about argument structure. However, at present it is unable to satisfyingly represent non-veridical intensional contex ts, often licensing inappropriate inferences. In this paper, we show how to resolve the problem of non-veridicality without appealing to layered graphs through a mapping from AMRs into Simply-Typed Lambda Calculus (STLC). At least for some cases, this requires the introduction of a new role :content which functions as an intensional operator. The translation proposed is inspired by the formal linguistics literature on the event semantics of attitude reports. Next, we address the interaction of quantifier scope and intensional operators in so-called de re/de dicto ambiguities. We adopt a scope node from the literature and provide an explicit multidimensional semantics utilizing Cooper storage which allows us to derive the de re and de dicto scope readings as well as intermediate scope readings which prove difficult for accounts without a scope node.
Humans are capable of learning novel concepts from very few examples; in contrast, state-of-the-art machine learning algorithms typically need thousands of examples to do so. In this paper, we propose an algorithm for learning novel concepts by repre senting them as programs over existing concepts. This way the concept learning problem is naturally a program synthesis problem and our algorithm learns from a few examples to synthesize a program representing the novel concept. In addition, we perform a theoretical analysis of our approach for the case where the program defining the novel concept over existing ones is context-free. We show that given a learned grammar-based parser and a novel production rule, we can augment the parser with the production rule in a way that provably generalizes. We evaluate our approach by learning concepts in the semantic parsing domain extended to the few-shot novel concept learning setting, showing that our approach significantly outperforms end-to-end neural semantic parsers.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا