Do you want to publish a course? Click here

On learning and representing social meaning in NLP: a sociolinguistic perspective

حول التعلم ويمثل المعنى الاجتماعي في NLP: منظور Sociolinguistic

396   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The field of NLP has made substantial progress in building meaning representations. However, an important aspect of linguistic meaning, social meaning, has been largely overlooked. We introduce the concept of social meaning to NLP and discuss how insights from sociolinguistics can inform work on representation learning in NLP. We also identify key challenges for this new line of research.



References used
https://aclanthology.org/
rate research

Read More

Neural networks are the state-of-the-art method of machine learning for many problems in NLP. Their success in machine translation and other NLP tasks is phenomenal, but their interpretability is challenging. We want to find out how neural networks r epresent meaning. In order to do this, we propose to examine the distribution of meaning in the vector space representation of words in neural networks trained for NLP tasks. Furthermore, we propose to consider various theories of meaning in the philosophy of language and to find a methodology that would enable us to connect these areas.
NLP systems rarely give special consideration to numbers found in text. This starkly contrasts with the consensus in neuroscience that, in the brain, numbers are represented differently from words. We arrange recent NLP work on numeracy into a compre hensive taxonomy of tasks and methods. We break down the subjective notion of numeracy into 7 subtasks, arranged along two dimensions: granularity (exact vs approximate) and units (abstract vs grounded). We analyze the myriad representational choices made by over a dozen previously published number encoders and decoders. We synthesize best practices for representing numbers in text and articulate a vision for holistic numeracy in NLP, comprised of design trade-offs and a unified evaluation.
Abstract Meaning Representation (AMR) has become popular for representing the meaning of natural language in graph structures. However, AMR does not represent scope information, posing a problem for its overall expressivity and specifically for drawi ng inferences from negated statements. This is the case with so-called positive interpretations'' of negated statements, in which implicit positive meaning is identified by inferring the opposite of the negation's focus. In this work, we investigate how potential positive interpretations (PPIs) can be represented in AMR. We propose a logically motivated AMR structure for PPIs that makes the focus of negation explicit and sketch an initial proposal for a systematic methodology to generate this more expressive structure.
Metaphor is an indispensable part of human cognition and everyday communication. Much research has been conducted elucidating metaphor processing in the mind/brain and the role it plays in communication. in recent years, metaphor processing systems h ave benefited greatly from these studies, as well as the rapid advances in deep learning for natural language processing (NLP). This paper provides a comprehensive review and discussion of recent developments in automated metaphor processing, in light of the findings about metaphor in the mind, language, and communication, and from the perspective of downstream NLP tasks.
Existing work on automated hate speech classification assumes that the dataset is fixed and the classes are pre-defined. However, the amount of data in social media increases every day, and the hot topics changes rapidly, requiring the classifiers to be able to continuously adapt to new data without forgetting the previously learned knowledge. This ability, referred to as lifelong learning, is crucial for the real-word application of hate speech classifiers in social media. In this work, we propose lifelong learning of hate speech classification on social media. To alleviate catastrophic forgetting, we propose to use Variational Representation Learning (VRL) along with a memory module based on LB-SOINN (Load-Balancing Self-Organizing Incremental Neural Network). Experimentally, we show that combining variational representation learning and the LB-SOINN memory module achieves better performance than the commonly-used lifelong learning techniques.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا