لقد حقق مجال NLP تقدما كبيرا في بناء تعويضات المعنى.ومع ذلك، تم تجاهل جانب مهم من المعنى اللغوي، والمعنى الاجتماعي، إلى حد كبير.نقدم مفهوم المعنى الاجتماعي ل NLP ومناقشة كيفية إبلاغ رؤى Sociolinguics بالعمل على التعلم في التمثيل في NLP.نحدد أيضا التحديات الرئيسية لهذا الخط الجديد من البحث.
The field of NLP has made substantial progress in building meaning representations. However, an important aspect of linguistic meaning, social meaning, has been largely overlooked. We introduce the concept of social meaning to NLP and discuss how insights from sociolinguistics can inform work on representation learning in NLP. We also identify key challenges for this new line of research.
References used
https://aclanthology.org/
Neural networks are the state-of-the-art method of machine learning for many problems in NLP. Their success in machine translation and other NLP tasks is phenomenal, but their interpretability is challenging. We want to find out how neural networks r
NLP systems rarely give special consideration to numbers found in text. This starkly contrasts with the consensus in neuroscience that, in the brain, numbers are represented differently from words. We arrange recent NLP work on numeracy into a compre
Abstract Meaning Representation (AMR) has become popular for representing the meaning of natural language in graph structures. However, AMR does not represent scope information, posing a problem for its overall expressivity and specifically for drawi
Metaphor is an indispensable part of human cognition and everyday communication. Much research has been conducted elucidating metaphor processing in the mind/brain and the role it plays in communication. in recent years, metaphor processing systems h
Existing work on automated hate speech classification assumes that the dataset is fixed and the classes are pre-defined. However, the amount of data in social media increases every day, and the hot topics changes rapidly, requiring the classifiers to