Do you want to publish a course? Click here

Fool Me Twice: Entailment from Wikipedia Gamification

تخدعني مرتين: الاستلام من جامعة ويكيبيديا

177   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We release FoolMeTwice (FM2 for short), a large dataset of challenging entailment pairs collected through a fun multi-player game. Gamification encourages adversarial examples, drastically lowering the number of examples that can be solved using shortcuts'' compared to other popular entailment datasets. Players are presented with two tasks. The first task asks the player to write a plausible claim based on the evidence from a Wikipedia page. The second one shows two plausible claims written by other players, one of which is false, and the goal is to identify it before the time runs out. Players pay'' to see clues retrieved from the evidence pool: the more evidence the player needs, the harder the claim. Game-play between motivated players leads to diverse strategies for crafting claims, such as temporal inference and diverting to unrelated evidence, and results in higher quality data for the entailment and evidence retrieval tasks. We open source the dataset and the game code.



References used
https://aclanthology.org/
rate research

Read More

Many applications require generation of summaries tailored to the user's information needs, i.e., their intent. Methods that express intent via explicit user queries fall short when query interpretation is subjective. Several datasets exist for summa rization with objective intents where, for each document and intent (e.g., weather''), a single summary suffices for all users. No datasets exist, however, for subjective intents (e.g., interesting places'') where different users will provide different summaries. We present SUBSUME, the first dataset for evaluation of SUBjective SUMmary Extraction systems. SUBSUME contains 2,200 (document, intent, summary) triplets over 48 Wikipedia pages, with ten intents of varying subjectivity, provided by 103 individuals over Mechanical Turk. We demonstrate statistically that the intents in SUBSUME vary systematically in subjectivity. To indicate SUBSUME's usefulness, we explore a collection of baseline algorithms for subjective extractive summarization and show that (i) as expected, example-based approaches better capture subjective intents than query-based ones, and (ii) there is ample scope for improving upon the baseline algorithms, thereby motivating further research on this challenging problem.
Contextual advertising provides advertisers with the opportunity to target the context which is most relevant to their ads. The large variety of potential topics makes it very challenging to collect training documents to build a supervised classifica tion model or compose expert-written rules in a rule-based classification system. Besides, in fine-grained classification, different categories often overlap or co-occur, making it harder to classify accurately. In this work, we propose wiki2cat, a method to tackle large-scaled fine-grained text classification by tapping on the Wikipedia category graph. The categories in the IAB taxonomy are first mapped to category nodes in the graph. Then the label is propagated across the graph to obtain a list of labeled Wikipedia documents to induce text classifiers. The method is ideal for large-scale classification problems since it does not require any manually-labeled document or hand-curated rules or keywords. The proposed method is benchmarked with various learning-based and keyword-based baselines and yields competitive performance on publicly available datasets and a new dataset containing more than 300 fine-grained categories.
Masked language models have quickly become the de facto standard when processing text. Recently, several approaches have been proposed to further enrich word representations with external knowledge sources such as knowledge graphs. However, these mod els are devised and evaluated in a monolingual setting only. In this work, we propose a language-independent entity prediction task as an intermediate training procedure to ground word representations on entity semantics and bridge the gap across different languages by means of a shared vocabulary of entities. We show that our approach effectively injects new lexical-semantic knowledge into neural models, improving their performance on different semantic tasks in the zero-shot crosslingual setting. As an additional advantage, our intermediate training does not require any supplementary input, allowing our models to be applied to new datasets right away. In our experiments, we use Wikipedia articles in up to 100 languages and already observe consistent gains compared to strong baselines when predicting entities using only the English Wikipedia. Further adding extra languages lead to improvements in most tasks up to a certain point, but overall we found it non-trivial to scale improvements in model transferability by training on ever increasing amounts of Wikipedia languages.
This study introduces and analyzes WikiTalkEdit, a dataset of conversations and edit histories from Wikipedia, for research in online cooperation and conversation modeling. The dataset comprises dialog triplets from the Wikipedia Talk pages, and edit ing actions on the corresponding articles being discussed. We show how the data supports the classic understanding of style matching, where positive emotion and the use of first-person pronouns predict a positive emotional change in a Wikipedia contributor. However, they do not predict editorial behavior. On the other hand, feedback invoking evidentiality and criticism, and references to Wikipedia's community norms, is more likely to persuade the contributor to perform edits but is less likely to lead to a positive emotion. We developed baseline classifiers trained on pre-trained RoBERTa features that can predict editorial change with an F1 score of .54, as compared to an F1 score of .66 for predicting emotional change. A diagnostic analysis of persisting errors is also provided. We conclude with possible applications and recommendations for future work. The dataset is publicly available for the research community at https://github.com/kj2013/WikiTalkEdit/.
Cross-lingual summarization is a challenging task for which there are no cross-lingual scientific resources currently available. To overcome the lack of a high-quality resource, we present a new dataset for monolingual and cross-lingual summarization considering the English-German pair. We collect high-quality, real-world cross-lingual data from Spektrum der Wissenschaft, which publishes human-written German scientific summaries of English science articles on various subjects. The generated Spektrum dataset is small; therefore, we harvest a similar dataset from the Wikipedia Science Portal to complement it. The Wikipedia dataset consists of English and German articles, which can be used for monolingual and cross-lingual summarization. Furthermore, we present a quantitative analysis of the datasets and results of empirical experiments with several existing extractive and abstractive summarization models. The results suggest the viability and usefulness of the proposed dataset for monolingual and cross-lingual summarization.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا