إن تطبيق تقنيات الترميز التنبؤية للنصوص القانونية لديه القدرة على تقليل تكلفة المراجعة القانونية للوثائق، ومع ذلك، هناك مثل هذه المجموعة الواسعة من المهام القانونية والتشريعات المتطورة باستمرار من الصعب بناء بيانات تدريبية كافية لتغطية جميعهاحالات.في هذه الورقة، نقوم بالتحقيق في طرق قليلة من الأساطير والرصاص التي تتطلب بيانات تدريب أقل بكثير وإدخال هندسة ثلاثية، والتي تنتج البيانات الإذنية أداء قريبة من نظام نظام إشرافي.تسمح هذه الطريقة بطرق ترميز التنبؤ أن يتم تطويرها بسرعة للوائح والأسواق الجديدة.
The application of predictive coding techniques to legal texts has the potential to greatly reduce the cost of legal review of documents, however, there is such a wide array of legal tasks and continuously evolving legislation that it is hard to construct sufficient training data to cover all cases. In this paper, we investigate few-shot and zero-shot approaches that require substantially less training data and introduce a triplet architecture, which for promissory statements produces performance close to that of a supervised system. This method allows predictive coding methods to be rapidly developed for new regulations and markets.
References used
https://aclanthology.org/
Natural Language Processing (NLP) is increasingly relying on general end-to-end systems that need to handle many different linguistic phenomena and nuances. For example, a Natural Language Inference (NLI) system has to recognize sentiment, handle num
Humans can distinguish new categories very efficiently with few examples, largely due to the fact that human beings can leverage knowledge obtained from relevant tasks. However, deep learning based text classification model tends to struggle to achie
The study aimed at evaluating the success of Tartos Port Container Terminal investing by the private sector in promoting its operational and financial performance. The study analyzed the operational and financial indicators for the Container Terminal
We explore few-shot learning (FSL) for relation classification (RC). Focusing on the realistic scenario of FSL, in which a test instance might not belong to any of the target categories (none-of-the-above, [NOTA]), we first revisit the recent popular
Exploiting label hierarchies has become a promising approach to tackling the zero-shot multi-label text classification (ZS-MTC) problem. Conventional methods aim to learn a matching model between text and labels, using a graph encoder to incorporate