Do you want to publish a course? Click here

GX at SemEval-2021 Task 2: BERT with Lemma Information for MCL-WiC Task

GX في Semeval-2021 المهمة 2: بيرت مع معلومات Lemma لمهمة MCL-WIC

486   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents the GX system for the Multilingual and Cross-lingual Word-in-Context Disambiguation (MCL-WiC) task. The purpose of the MCL-WiC task is to tackle the challenge of capturing the polysemous nature of words without relying on a fixed sense inventory in a multilingual and cross-lingual setting. To solve the problems, we use context-specific word embeddings from BERT to eliminate the ambiguity between words in different contexts. For languages without an available training corpus, such as Chinese, we use neuron machine translation model to translate the English data released by the organizers to obtain available pseudo-data. In this paper, we apply our system to the English and Chinese multilingual setting and the experimental results show that our method has certain advantages.



References used
https://aclanthology.org/
rate research

Read More

In this paper, we introduce the first SemEval task on Multilingual and Cross-Lingual Word-in-Context disambiguation (MCL-WiC). This task allows the largely under-investigated inherent ability of systems to discriminate between word senses within and across languages to be evaluated, dropping the requirement of a fixed sense inventory. Framed as a binary classification, our task is divided into two parts. In the multilingual sub-task, participating systems are required to determine whether two target words, each occurring in a different context within the same language, express the same meaning or not. Instead, in the cross-lingual part, systems are asked to perform the task in a cross-lingual scenario, in which the two target words and their corresponding contexts are provided in two different languages. We illustrate our task, as well as the construction of our manually-created dataset including five languages, namely Arabic, Chinese, English, French and Russian, and the results of the participating systems. Datasets and results are available at: https://github.com/SapienzaNLP/mcl-wic.
This paper describes the system of the Cambridge team submitted to the SemEval-2021 shared task on Multilingual and Cross-lingual Word-in-Context Disambiguation. Building on top of a pre-trained masked language model, our system is first pre-trained on out-of-domain data, and then fine-tuned on in-domain data. We demonstrate the effectiveness of the proposed two-step training strategy and the benefits of data augmentation from both existing examples and new resources. We further investigate different representations and show that the addition of distance-based features is helpful in the word-in-context disambiguation task. Our system yields highly competitive results in the cross-lingual track without training on any cross-lingual data; and achieves state-of-the-art results in the multilingual track, ranking first in two languages (Arabic and Russian) and second in French out of 171 submitted systems.
In this paper, we proposed a BERT-based dimensional semantic analyzer, which is designed by incorporating with word-level information. Our model achieved three of the best results in four metrics on ROCLING 2021 Shared Task: Dimensional Sentiment Ana lysis for Educational Texts''. We conducted a series of experiments to compare the effectiveness of different pre-trained methods. Besides, the results also proofed that our method can significantly improve the performances than classic methods. Based on the experiments, we also discussed the impact of model architectures and datasets.
In this work, we present our approach for solving the SemEval 2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation (MCL-WiC). The task is a sentence pair classification problem where the goal is to detect whether a given word co mmon to both the sentences evokes the same meaning. We submit systems for both the settings - Multilingual (the pair's sentences belong to the same language) and Cross-Lingual (the pair's sentences belong to different languages). The training data is provided only in English. Consequently, we employ cross-lingual transfer techniques. Our approach employs fine-tuning pre-trained transformer-based language models, like ELECTRA and ALBERT, for the English task and XLM-R for all other tasks. To improve these systems' performance, we propose adding a signal to the word to be disambiguated and augmenting our data by sentence pair reversal. We further augment the dataset provided to us with WiC, XL-WiC and SemCor 3.0. Using ensembles, we achieve strong performance in the Multilingual task, placing first in the EN-EN and FR-FR sub-tasks. For the Cross-Lingual setting, we employed translate-test methods and a zero-shot method, using our multilingual models, with the latter performing slightly better.
In this paper, we describe our proposed methods for the multilingual word-in-Context disambiguation task in SemEval-2021. In this task, systems should determine whether a word that occurs in two different sentences is used with the same meaning or no t. We proposed several methods using a pre-trained BERT model. In two of them, we paraphrased sentences and add them as input to the BERT, and in one of them, we used WordNet to add some extra lexical information. We evaluated our proposed methods on test data in SemEval- 2021 task 2.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا