في هذه الورقة، اقترحنا محلل دلالي أبعاد بر فندقية، وهو مصمم من خلال دمج معلومات على مستوى Word.حقق نموذجنا ثلاثة من أفضل النتائج في أربعة مقاييس على rocling 2021 المهمة المشتركة: تحليل المعنويات الأبعاد للنصوص التعليمية ".أجرينا سلسلة من التجارب لمقارنة فعالية مختلف الأساليب المدربة مسبقا.علاوة على ذلك، فإن النتائج تعاني أيضا على أن طريقتنا يمكن أن تحسن بشكل كبير من الأداء من الأساليب الكلاسيكية.استنادا إلى التجارب، ناقشنا أيضا تأثير هياكنات النموذج ومجموعات البيانات.
In this paper, we proposed a BERT-based dimensional semantic analyzer, which is designed by incorporating with word-level information. Our model achieved three of the best results in four metrics on ROCLING 2021 Shared Task: Dimensional Sentiment Analysis for Educational Texts''. We conducted a series of experiments to compare the effectiveness of different pre-trained methods. Besides, the results also proofed that our method can significantly improve the performances than classic methods. Based on the experiments, we also discussed the impact of model architectures and datasets.
References used
https://aclanthology.org/
This technical report aims at the ROCLING 2021 Shared Task: Dimensional Sentiment Analysis for Educational Texts. In order to predict the affective states of Chinese educational texts, we present a practical framework by employing pre-trained languag
This paper present a description for the ROCLING 2021 shared task in dimensional sentiment analysis for educational texts. We submitted two runs in the final test. Both runs use the standard regression model. The Run1 uses Chinese version of BERT as
This paper presents the GX system for the Multilingual and Cross-lingual Word-in-Context Disambiguation (MCL-WiC) task. The purpose of the MCL-WiC task is to tackle the challenge of capturing the polysemous nature of words without relying on a fixed
We use the MacBERT transformers and fine-tune them to ROCLING-2021 shared tasks using the CVAT and CVAS data. We compare the performance of MacBERT with the other two transformers BERT and RoBERTa in the valence and arousal dimensions, respectively.
In this shared task, this paper proposes a method to combine the BERT-based word vector model and the LSTM prediction model to predict the Valence and Arousal values in the text. Among them, the BERT-based word vector is 768-dimensional, and each wor