يمكن جمع كميات كبيرة من سجلات التفاعل من أنظمة NLP التي يتم نشرها في العالم الحقيقي.كيف يمكن الاستفادة من هذه الثروة من المعلومات؟يعد استخدام سجلات التفاعل هذه في إعداد تعليم التعزيز (RL) غير متصل نهجا واعدا.ومع ذلك، نظرا لطبيعة مهام NLP وقيود أنظمة الإنتاج، تنشأ سلسلة من التحديات.نقدم نظرة عامة موجزة عن هذه التحديات ومناقشة الحلول الممكنة.
Large volumes of interaction logs can be collected from NLP systems that are deployed in the real world. How can this wealth of information be leveraged? Using such interaction logs in an offline reinforcement learning (RL) setting is a promising approach. However, due to the nature of NLP tasks and the constraints of production systems, a series of challenges arise. We present a concise overview of these challenges and discuss possible solutions.
References used
https://aclanthology.org/
We investigate grounded language learning through real-world data, by modelling a teacher-learner dynamics through the natural interactions occurring between users and search engines; in particular, we explore the emergence of semantic generalization
Complex natural language applications such as speech translation or pivot translation traditionally rely on cascaded models. However,cascaded models are known to be prone to error propagation and model discrepancy problems. Furthermore, there is no p
We investigate the question of how adaptive feedback from a virtual agent impacts the linguistic input of the user in a shared world game environment. To do so, we carry out an exploratory pilot study to observe how individualized linguistic feedback
Current benchmark tasks for natural language processing contain text that is qualitatively different from the text used in informal day to day digital communication. This discrepancy has led to severe performance degradation of state-of-the-art NLP m
This paper studies continual learning (CL) of a sequence of aspect sentiment classification (ASC) tasks. Although some CL techniques have been proposed for document sentiment classification, we are not aware of any CL work on ASC. A CL system that in