نحن نبحث عن مسألة كيف تؤثر ردود الفعل التكيفية من عامل الظاهري على المدخلات اللغوية للمستخدم في بيئة ألعاب عالمية مشتركة. للقيام بذلك، نقوم بإجراء دراسة تجريبية استكشافية لمراقبة كيفية تأثير ردود الفعل اللغوية الفردية على إدخال خطاب المستخدم. نقدم لعبة تسيطر على الكلام، وإخلاء Apple الأساسية، حيث يتعلم الوكيل المهام المعقدة باستخدام معرفة قاعدة بأعمال بسيطة. تم تجهيز الوكيل بآلية تعليمية لرسم الأوامر الجديدة بتسلسل الإجراءات البسيطة، وكذلك القدرة على دمج إدخال المستخدم في ردود مكتوبة. يشارك الوكيل مرارا وتكرارا حالته المعرفة الداخلية من خلال الاستجابة لما يعرفه ولا يعرفه عن معنى اللغة والبيئة المشتركة. تركز ورقتنا على حلقة الملاحظات اللغوية من أجل تحليل طبيعة إدخال المستخدم. يتم توفير ردود الفعل من الوكيل في شكل حركة مرئية وردود لغوية مكتوبة. يتم إيلاء اهتمام خاص لإدماج مدخلات المستخدم في استجابات الوكيل وتحديث تعيينات الكلام إلى العمل بناء على الأوامر التي يقدمها المستخدم. من خلال دراستنا التجريبية، نقوم بتحليل نجاح المهمة ومقارنة الميزات المعجمية لإدخال المستخدم. تظهر النتائج الاختلاف في طول المدخلات والتنوع المعجمي عبر المستخدمين، مما يشير إلى ارتباط بين الاثنين يمكن دراستهما كذلك.
We investigate the question of how adaptive feedback from a virtual agent impacts the linguistic input of the user in a shared world game environment. To do so, we carry out an exploratory pilot study to observe how individualized linguistic feedback affects the user's speech input. We introduce a speech-controlled game, Apple Core-dination, in which an agent learns complex tasks using a base knowledge of simple actions. The agent is equipped with a learning mechanism for mapping new commands to sequences of simple actions, as well as the ability to incorporate user input into written responses. The agent repeatedly shares its internal knowledge state by responding to what it knows and does not know about language meaning and the shared environment. Our paper focuses on the linguistic feedback loop in order to analyze the nature of user input. Feedback from the agent is provided in the form of visual movement and written linguistic responses. Particular attention is given to incorporating user input into agent responses and updating the speech-to-action mappings based on commands provided by the user. Through our pilot study, we analyze task success and compare the lexical features of user input. Results show variation in input length and lexical variety across users, suggesting a correlation between the two that can be studied further.
References used
https://aclanthology.org/
Large volumes of interaction logs can be collected from NLP systems that are deployed in the real world. How can this wealth of information be leveraged? Using such interaction logs in an offline reinforcement learning (RL) setting is a promising app
Giving feedback to students is not just about marking their answers as correct or incorrect, but also finding mistakes in their thought process that led them to that incorrect answer. In this paper, we introduce a machine learning technique for mista
The Covid pandemic upended translation teaching globally. The forced move to online teaching represented a gargantuan challenge for anyone only experienced in face-to-face teaching. Online translation teaching requires distinct approaches to guarante
With counterfactual bandit learning, models can be trained based on positive and negative feedback received for historical predictions, with no labeled data needed. Such feedback is often available in real-world dialog systems, however, the modulariz
We present a tool that provides automated feedback to students studying Spanish writing. The feedback is given for four categories: topic development, coherence, writing conventions, and essay organization. The tool is made freely available via a Goo