Do you want to publish a course? Click here

Studying the Effects of Gas Heat Treatment on the Distribution of the Doping Elements on the Surface Layer of Titanium Alloys BT9

دراسة تأثير وسط المعالجة الحرارية الغازية على توزع عناصر الإشابة في الطبقة السطحية لسبائك التيتانيوم BT 9

863   0   1   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this issue, the effect of gas heat treatment ambient at the temperature of 950C for 8hours using the gases NH3 or CH4 and using the gases NH3 and CH4 for (4+4)hours of the distribution of the doping elements on Titanium alloys BT9 was studied. Oxide formation at the different treatment ambient as a reason of gas-phase oxygen distribution to high depths in the samples was discovered.

References used
Danil Vershinin, Marina Smolyakova,, Influence of Phase-Structure Composition on Properties of Titanium Alloys at Low–Temperature Nitriding in Mixtures of Gases. National research university «Belgorod State University» Centre NSMN ct.,( 2011), pp.32-34
Andrea C. Sudik, Andrew R. Millward, Nathan W. Ockwig, Adrien P. Côté, Jaheon Kim, and Omar M. Yaghi .,Design, Synthesis, Structure, and Gas (N2, Ar, CO2, CH4, and H2) Sorption Properties of Porous Metal-Organic Tetrahedral and Heterocuboidal Polyhedra , Soongsil University, Seoul , Korea ,(2005), pp.157-743
Emeline A. V. , Sheremetyeva N. V. , Khomchenko N. V. , Ryabchuk V. K. Photoinduced Formation of Defects and Nitrogen Stabilization of Color Centers in N-Doped Titanium Dioxide, Institute of Physics, St. Petersburg State University, and Dipartimento di Chimica Organica, Universita , Italia, (2007), 111 (30), pp 11456–11462
rate research

Read More

We have studied in this paper the effect of thermal gaseous using NH3 – gas at some diffusion layers properties of tool steel 20 in temperature range (550 ,650 ,750, 850) 0C , 4h at each one . The purpose of this heat treatment is to get and determ ine the microhardness, fatigue and corrosion resistance. The micro-hardness was determined using Vickers's tester with values ranged between ( 130-435 ) HV. In order to verify these results, we studied the microstructure if the surface layers using metallurgical microscope and SEM (Scanning Electron Microscope). Furthermore the corrosion resistance was studied after immersing it in sea water for two year.
In this work, the processing of aluminum alloys - copper, which added amounts of copper to aluminum in different parentages (2.5- 4-4.5%) so as not to exceed the limit of saturation Aluminum 6 %( copper).
This paper aims to study the distribution of free nitrogen atoms through surface of α – Fe sample using the numerical solution for linear differential equation by means of Crank – Nicolson method at a temperature range ( 550 to 950 0C) and time inter val (0 – 8)h where the nitrogen diffusion constant is at 850 0C and 8h. Under the supposed condition this study has illustrated that the diffusion depth of nitrogen atoms from surface towards inners reaches to ̴ 1.2mm, i.e., determining the layer thickness of the formed nitride compounds which gives the surface layer of α – Fe high resistance against corrosion processes resulting from surrounded environment.
This research aims to study the effect of adding alloying elements and heat treatment of Zinc metal on solar energy absorbing , nine alloys ingots were manufactured by changing the percentages of added Aluminum and Copper on the pure Zinc, and thes e ratios of Aluminum were : (10% , 20% , 30% , 40 % , 50%) to demonstrate the effect of adding Aluminum to Zinc metal on solar energy absorbing , and ratios of copper were : (20% , 40%) , as well as we prepare two pure zinc samples with 99.2% of purity , one was rapidly cooled and the other slowly cooled , to demonstrate the effect of heat treatment on solar energy absorbing . In order to measure the solar energy absorbing for prepared samples , we manufactured a device depends on the methods of heat exchange between solar radiation and the surface exposed to radiation . The obtained results showed that adding Aluminum and Copper to the pure Zinc caused a decrease in solar energy absorbing . As well as increasing the percentages of adding Aluminum and Copper to the pure Zinc caused a gradually decrease in solar energy absorbing . comparing the absorbing of pure zinc samples, one was rapidly cooled and the other slowly cooled , the results showed that the sample was rapidly cooled was better than the sample slowly cooled on solar energy absorbing .
A new group of Z n - Al alloys suitable for casting was developed in the late sixties, These alloys are ZA - 8 , ZA - 12 and ZA – 27, where the numbers represent the approximate percentage of aluminum in the alloy. These alloys compete with cast iro n and copper alloys and aluminum alloys. ZA – 27 alloy is characterized by the biggest strength and lowest density alloy from the rest of ZA alloys. It has good physical and mechanical properties (good strength, good cast ability, ease of machining, good wear properties and high corrosion resistance). This research is aimed to study the effect of heat treatment on mechanical properties as well as to improve the wear properties of ZA-27alloy. Heat treatment of type T4 was applied on ZA-27 alloy (This treatment was done by heating the alloy to a temperature equal to 370 oC for a period of 3 or 5 hours and then immersion in water followed by natural aging for 30 days). Wear testing has been made by using dry sliding test of pin samples on the disk - ZA – 27 alloy after casting without any treatment and wear tests were performed on heat treated ZA – 27 alloy samples. The microstructure of the alloy after casting and after heat treatment was examined and the effect of the microstructure on the wear behavior was studied. The hardness and tensile strength of heat treated samples were reduced while elongation was increased compared with alloy after casting. The rate of decrease of hardness was equal to 34.7 %, which is consistent with solutionizing period. On the contrary, the increase in the solutionizing period decreases strength and increases elongation. The study shows also that the heat treated samples have achieved a significant improvement on wear properties compared to the samples after casting without heat treatment

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا