Do you want to publish a course? Click here

New types of Open Sets and Closed Sets in bi-topological Spaces

انماط جديدة من المجموعات المفتوحة و المغلقة في الفضاءات التبولوجية الثنائية

1209   2   107   0 ( 0 )
 Publication date 2017
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we introduced new types of open and closed sets in bitopological spaces, where we have introduced the definition of open sets.


Artificial intelligence review:
Research summary
يتناول هذا البحث تعريف ودراسة أنواع جديدة من المجموعات المفتوحة والمغلقة في الفضاءات التبولوجية الثنائية. يتم تقديم تعريفات جديدة للمجموعات المفتوحة من النمط N والمجموعات المغلقة من النمط N، بالإضافة إلى المجموعات المفتوحة والمغلقة من النمط Nα. يتم دراسة الخصائص الأساسية لهذه المجموعات والعلاقات بينها وبين المجموعات المفتوحة والمغلقة في الفضاءات التبولوجية الثنائية. كما يتناول البحث تعريفات جديدة لمفاهيم داخلية ولصاقة المجموعات من النمط N في هذه الفضاءات، ويستعرض بعض المبرهنات المتعلقة بهذه المفاهيم. يهدف البحث إلى توسيع الفهم النظري للفضاءات التبولوجية الثنائية وتقديم أدوات جديدة يمكن استخدامها في دراسة الاستمرارية، بديهيات الفصل، الترابط، والتراص في هذه الفضاءات.
Critical review
دراسة نقدية: يقدم البحث إضافة قيمة إلى نظرية الفضاءات التبولوجية من خلال تعريف أنواع جديدة من المجموعات المفتوحة والمغلقة. ومع ذلك، يمكن أن يكون البحث أكثر شمولاً إذا تم تضمين تطبيقات عملية لهذه المفاهيم الجديدة في مجالات أخرى من الرياضيات أو العلوم التطبيقية. كما أن بعض التعريفات والمبرهنات قد تكون معقدة وتحتاج إلى توضيح أكثر لتكون مفهومة بشكل أفضل للقراء غير المتخصصين. من المفيد أيضاً تضمين أمثلة تطبيقية توضح كيفية استخدام هذه المفاهيم الجديدة في حل مسائل محددة.
Questions related to the research
  1. ما هي الأنواع الجديدة من المجموعات المفتوحة والمغلقة التي تم تعريفها في البحث؟

    تم تعريف المجموعات المفتوحة من النمط N والمجموعات المغلقة من النمط N، بالإضافة إلى المجموعات المفتوحة والمغلقة من النمط Nα.

  2. ما هي الخصائص الأساسية للمجموعات المفتوحة والمغلقة من النمط N في الفضاءات التبولوجية الثنائية؟

    تم دراسة الخصائص الأساسية لهذه المجموعات، بما في ذلك العلاقات بينها وبين المجموعات المفتوحة والمغلقة التقليدية في الفضاءات التبولوجية الثنائية.

  3. كيف يمكن استخدام هذه المفاهيم الجديدة في دراسة الفضاءات التبولوجية الثنائية؟

    يمكن استخدام هذه المفاهيم في دراسة الاستمرارية، بديهيات الفصل، الترابط، والتراص في الفضاءات التبولوجية الثنائية.

  4. ما هي التوصيات التي قدمها البحث للباحثين في هذا المجال؟

    يوصي البحث باستخدام هذه الأنواع الجديدة من المجموعات المفتوحة والمغلقة في دراسة الاستمرارية، بديهيات الفصل، الترابط، والتراص في الفضاءات التبولوجية الثنائية.


References used
Kelly, J. C. (1963), Bitopological spaces, Proc. London Math. Soc.,No.13, 71-89
Jabbar ,N. A. and Nasir, A. I. (2010), Some Types of Compactness in Bitopological Spaces, Ibn AL-Haitham J. For Pure & Appl. Sci., Vol.23, No.1, 321-327
Gharibah ,T. and Alhamido ,R. Kh. (2017), Nα-Open Sets and Sα-Open Sets in Tri-topological Spaces, Journal of Albaath University., Vol. 39
rate research

Read More

In this paper we introduced new types of open and closed sets in Quad-topological spaces, where we have introduced the definition of open sets of the pattern N and closed sets of the pattern N in Quad-topological spaces, as the we know from the open sets of the pattern S and closed sets of the pattern S in these spaces, and we studied the basic properties of these new types of sets, as the we have created the relationship between them and open sets and closed in these Quad-topological spaces. Then use this new concept of open and closed sets in the definition of closure and interior set, where we know the closure and interior set of the pattern N by relying on these new varieties of open and closed sets, we also found the basic properties of closure and the interior of the pattern N.
In this paper we introduced four new types of open and closed sets in tri-topological spaces, where we have introduced the definition of open sets of the pattern Nα and closed sets of the pattern Nα in tritopological spaces, as the we know from th e open sets of the pattern Sα and closed sets of the pattern Sα in these spaces, and we studied the basic properties of these new types of sets, as the we have created the relationship between them and open and closed sets in these tri-topological spaces. Then use this new concept of open and closed sets in the definition of closure and interior set, where we know the closure and interior set of the pattern Nα by relying on these new varieties of open and closed sets, we also found the basic properties of closure and the interior of the pattern Nα.
In this paper we introduced four new types of open and closed sets in tri-topological spaces, where we have introduced the definition of open sets of the pattern N and closed sets of the pattern N in tri-topological spaces, as the we know from the op en sets of the pattern S and closed sets of the pattern S in these spaces, and we studied the basic properties of these new types of sets, as the we have created the relationship between them and open sets and closed in these tri-topological spaces. Then use this new concept of open and closed sets in the definition of closure and interior set, where we know the closure and interior set of the pattern N by relying on these new varieties of open and closed sets, we also found the basic properties of closure and the interior of the pattern N.
We prove that the sum A + B of closed subspaces A and B of the inverse limit of finite dimensional vector spaces, V = limVn (n ∈ N) over an algebraically closed field of characteristic 0 is closed. We extend also the basic fact that every ideal of a finite dimensional semisimple Lie algebra has a unique complement to the case of closed ideals of prosemisimple Lie algebras.
This paper introduces a generalization of the concept of Set category introduced in [10] by constructing the category - whose objects are small ℒ - fuzzy sets in which the characteristic functions takes its values from a complete distributive latt ice, and its arrows are ℒ - fuzzy maps. After that we construct a functor - between these two categories, in a way that forgets the fuzziness of sets and maps, and formalizing the inclusion functor - . In addition, we study of the applications of universal arrows in category - , and getting back to the classical state and comparing it with that introduced in [10].

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا