Do you want to publish a course? Click here

A New Fault Tolerance Protocol in Application-Level Multicast Networks

بروتوكول سماحية عطل جديد في الشبكات التطبيقية متعددة البث

1328   0   40   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Application-Level Multicast Networks are easy to deployment, it does not require any change in the network layer, where data is sent to the network via the built-up coverage of the tree using a single-contact transmission of the final contract, who are the hosts are free can join / leave whenever they want it, or even to leave without telling any node so. Causing the separation of the children of the leaved node from the tree, and the request for rejoin, in other words, these nodes will be separated from the overlay tree and cannot get the data even rejoin. This causes the distortion of the constructed tree, and the loss of several packets which can significantly impact the user. One of the key challenges in building a multi-efficiently and effectively overlay multicast protocol is to provide a robust mechanism to overcome the sudden departure of a node from the overlay tree without a significant impact on the performance of the constructed tree. In this research, we propose a new protocol to solve problems presented previously.

References used
(WITTMANN,R. and ZITTERBART, M. “Multicast Communication Protocols and Applications”. ISBN 1-55860-645-9. Morgan Kaufmann Publishers, (2001
(EL-SAYED, Ayman. “Application-Level Multicast Transmission Techniques Over The Internet”. PhD thesis, INRIA Rhne Alpes, March (2004
(SHUKLA, Shubha and KOSTA, Akhilesh, “A Relevant and Survivable Scheme for Application Layer Multicast Routing”, Department of Computer Science & Engineering K.I.T, Kanpur, India, vol.2, no.8, pp: 43-54, August (2013
rate research

Read More

Overlay multicast (Application-Level Multicast (ALM)) constructs a multicast delivery tree among end hosts. Unlike traditional IP multicast where the internal tree nodes are dedicated routers which are relatively stable and do not leave the multicast tree voluntarily, the non-leaf nodes in the overlay tree are free end hosts which can join/leave the overlay at will, or even crash without notification. So, the leaving node can leave suddenly and cannot give its descendants (and the Rendez-vous Point (RP)) the time to prepare the recovering (the reconnection) of the overlay tree, and so there is a need to trigger a rearrangement process in which each one of its descendants should rejoin the overlay tree. In this case, all of its downstream nodes are partitioned from the overlay tree and cannot get the multicast data any more. These dynamic characteristics cause the instability of the overlay tree, which can significantly impact the user. A key challenge in constructing an efficient and resilient ALM protocol is to provide fast data recovery when overlay node failures partition the data delivery paths. In this paper, we analyze the performance of the ALM tree recovery solutions using different metrics.
Recent researches consecrate their efforts to overcome multicast network problems by moving all the multicast functions and responsibilities from network layer (routers) to application layer ( terminal nodes (Users)). Most of Application-Level Multi cast (ALM)protocols rely on the idea that when a parent node leaves the overlay tree, all itspredecessors should re-join the tree again,which cause several re-organization operations in addition to the interruption of communication frequently. Membership Duration Aware ALM (MDA-ALM) protocol was suggested to solve this problem, it depends on the announcement of the expected membership duration for each new user in order to build a stable and efficient tree. Although the performance of MD-ALM protocol is good, but it is based on membership duration parameter and this makes it more sensitive for the cheating and non-cooperative nodes. The main goal for the cheating nodes is to improve its position in the tree by trying to get the nearest position to the source node and to avoid having any children’s in order to relieve its load by manipulating the membership duration information. Our research aims to find the best solution to detect the cheating nodes and cancel its affects in order to improve the performance of MDA against cheating. The simulation results improve that the proposed method detects effectively the cheating nodes.
Application-Level Multicast (ALM) has been proposed as an alternative solution to overcome the lack of deployment of the IP Multicast group communication model. It builds an overlay tree consisting of end-to-end unicast connections between end-host s based on the collaboration of group members with each other. The efficiency of the constructed overlay tree depends entirely on the honesty and on the cooperation of all participating members. However such behaviour can not be guaranteed and some selfish and non-cooperative nodes may take profit from the honesty of other members in the overlay. Recently, many researchers have been investigating the impact of selfishness of nodes in the overlay multicast. Our contribution in this paper is to describe in detail the basic algorithms used to construct the overlay tree, and evaluate the impact of cheating nodes on the stability and on the performance of constructed overlay tree using these algorithms.
In this paper, we present work in progress aimed at the development of a new image dataset with annotated objects. The Multilingual Image Corpus consists of an ontology of visual objects (based on WordNet) and a collection of thematically related ima ges annotated with segmentation masks and object classes. We identified 277 dominant classes and 1,037 parent and attribute classes, and grouped them into 10 thematic domains such as sport, medicine, education, food, security, etc. For the selected classes a large-scale web image search is being conducted in order to compile a substantial collection of high-quality copyright free images. The focus of the paper is the annotation protocol which we established to facilitate the annotation process: the Ontology of visual objects and the conventions for image selection and for object segmentation. The dataset is designed both for image classification and object detection and for semantic segmentation. In addition, the object annotations will be supplied with multilingual descriptions by using freely available wordnets.
WLANs have evolved into the best choice in a number of situations such as government institutions and airports, but because of the open transport in these networks increased the possibility of security attacks, which required the use of security prot ocols to protect the network and to protect users. This research examines and evaluates the impact of security protocols on WLAN performance in order to select the optimal protocol, the impact of these protocols on network performance has been evaluated by adding those Protocols to open source GloMoSim environment, And recent simulation results show that the performance of these protocols are varies according to the environment applied within them, noting that there is no effective Protocol in all environments, i.e. the suitable Protocol in an environment may be unsuitable in other ones. After comparing performance results in simulations with performance results in the real network, we can see that the best performance protocol is WEP. Also, The best protocol for both performance and security is the WPA2. Hence, our choice to one of the security protocols depends on what we want to secure in the level of protection and the performance of the network.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا