Do you want to publish a course? Click here

Analysis and Detection of Anti-Patterns

تحليل النماذج الضّارة و اكتشافها

1387   1   28   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This study divides to two parts. The first one highlights the antipatterns in comparison with design patterns. By the second part, we suggest a new tool which is able to detect anti-patterns in early phases of software lifecycle.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة موضوع النماذج الضارة في هندسة البرمجيات، والتي تُعرف بأنها حلول سريعة وغير مثالية للمشاكل التي تواجه المطورين أثناء تطوير البرمجيات. تنقسم الدراسة إلى قسمين رئيسيين: الأول يسلط الضوء على النماذج الضارة ويقارنها بنماذج التصميم، بينما يقترح القسم الثاني أداة لاكتشاف هذه النماذج في مراحل مبكرة من دورة حياة البرمجية. تُستخدم لغة EXPRESS في نمذجة البيانات وفقًا لمعيار STEP، ويتم تحليل هذه النماذج لاكتشاف النماذج الضارة باستخدام أدوات مثل JSDAI وPDE ضمن منصة Eclipse. توضح الدراسة كيفية بناء الأداة واختبارها على نماذج بيانات معيارية، وتعرض النتائج التي توصلت إليها في اكتشاف النماذج الضارة. تهدف الأداة إلى تحسين جودة البرمجيات وتقليل الأخطاء في المراحل المبكرة من التطوير، مما يوفر الوقت والجهد والموارد.
Critical review
تُعد هذه الدراسة خطوة مهمة في مجال هندسة البرمجيات، حيث تقدم حلاً عمليًا لمشكلة شائعة تواجه المطورين. ومع ذلك، يمكن نقد الدراسة من عدة جوانب. أولاً، تركز الدراسة بشكل كبير على معيار STEP ولغة EXPRESS، مما قد يحد من تطبيق الأداة على نطاق أوسع من البرمجيات التي لا تستخدم هذا المعيار. ثانيًا، لم تتناول الدراسة بشكل كافٍ كيفية التعامل مع النماذج الضارة في مراحل متقدمة من دورة حياة البرمجية، مثل مرحلة الصيانة. ثالثًا، كان من الممكن تقديم مزيد من الأمثلة العملية والتطبيقات الواقعية للأداة المقترحة لتوضيح فعاليتها بشكل أفضل. على الرغم من هذه النقاط، فإن الدراسة تُعد إضافة قيمة لمجال هندسة البرمجيات وتفتح الباب لمزيد من الأبحاث في هذا المجال.
Questions related to the research
  1. ما هو الهدف الرئيسي من الدراسة؟

    الهدف الرئيسي من الدراسة هو اكتشاف النماذج الضارة في مراحل مبكرة من دورة حياة البرمجية باستخدام أداة مقترحة تعتمد على معيار STEP ولغة EXPRESS.

  2. ما هي النماذج الضارة وكيف تختلف عن نماذج التصميم؟

    النماذج الضارة هي حلول سريعة وغير مثالية للمشاكل التي تواجه المطورين أثناء تطوير البرمجيات، وتختلف عن نماذج التصميم التي تقدم حلولًا مثبتة وجيدة لمشاكل التصميم المتكررة.

  3. ما هي الأدوات المستخدمة في بناء الأداة المقترحة؟

    تم استخدام أدوات مثل JSDAI وPDE ضمن منصة Eclipse لبناء الأداة المقترحة لاكتشاف النماذج الضارة.

  4. ما هي الفائدة المتوقعة من الأداة المقترحة؟

    الفائدة المتوقعة من الأداة المقترحة هي تحسين جودة البرمجيات وتقليل الأخطاء في المراحل المبكرة من التطوير، مما يوفر الوقت والجهد والموارد.


References used
Connie U. Smith, Lloyd G. Williams, 2000- Software Performance AntiPatterns. Software Engineering Research and L&S Computer Technology, Inc
William J. Brown, Raphael C. Malveau, Hays W. McCormick III, Thomas J. Mowbray, John Wiley & Sons, Inc, 1998- Refactoring Software, Architectures, and Projects in Crisis
Ruben Wieman, 2011- Anti-Pattern Scanner: An Approach to Detect Anti-Patterns and Design Violations. Delft, the Netherlands
rate research

Read More

A new face detection system is presented. The system combines several techniques for face detection to achieve better detection rates, a skin colormodel based on RGB color space is built and used to detect skin regions. The detected skin regions are the face candidate regions. Neural network is used and trained with training set of faces and non-faces that projected into subspace by principal component analysis technique. we have added two modifications for the classical use of neural networks in face detection. First, the neural network tests only the face candidate regions for faces, so the search space is reduced. Second, the window size used by the neural network in scanning the input image is adaptive and depends on the size of the face candidate region. This enables the face detection system to detect faces with any size.
This research handles the modeling human mobility patterns in a geographical area. It also reviews well-known models along with their pros and cons. The main result we obtained says that people do not move most of time. In fact, they spend the ma jority of their time in certain places, homes, offices, etc. Furthermore, human mobility patterns show regularity if observed over a long-enough time duration.
There is a growing interest in virtual assistants with multimodal capabilities, e.g., inferring the context of a conversation through scene understanding. The recently released situated and interactive multimodal conversations (SIMMC) dataset address es this trend by enabling research to create virtual assistants, which are capable of taking into account the scene that user sees when conversing with the user and also interacting with items in the scene. The SIMMC dataset is novel in that it contains fully annotated user-assistant, task-orientated dialogs where the user and an assistant co-observe the same visual elements and the latter can take actions to update the scene. The SIMMC challenge, held as part of theNinth Dialog System Technology Challenge(DSTC9), propelled the development of various models which together set a new state-of-the-art on the SIMMC dataset. In this work, we compare and analyze these models to identifywhat worked?', and the remaining gaps;whatnext?'. Our analysis shows that even though pretrained language models adapted to this set-ting show great promise, there are indications that multimodal context isn't fully utilised, and there is a need for better and scalable knowledge base integration. We hope this first-of-its-kind analysis for SIMMC models provides useful insights and opportunities for further research in multimodal conversational agents
The aim of this research is to study of detection sensitivity in optical preamplifier, which is used as a first stage in optical receivers. This subject is important because it is used in laser rangefinders. The parameters that affect the distance measurement using time of flight technique are studied in details. Then, noise analysis and signal to noise ratio calculation are performed in preamplifiers to detect a signal with pulse width of 30ns using Matlab. The study results are applied to some preamplifiers to determine the minimum detectable power.
Current abusive language detection systems have demonstrated unintended bias towards sensitive features such as nationality or gender. This is a crucial issue, which may harm minorities and underrepresented groups if such systems were integrated in r eal-world applications. In this paper, we create ad hoc tests through the CheckList tool (Ribeiro et al., 2020) to detect biases within abusive language classifiers for English. We compare the behaviour of two BERT-based models, one trained on a generic hate speech dataset and the other on a dataset for misogyny detection. Our evaluation shows that, although BERT-based classifiers achieve high accuracy levels on a variety of natural language processing tasks, they perform very poorly as regards fairness and bias, in particular on samples involving implicit stereotypes, expressions of hate towards minorities and protected attributes such as race or sexual orientation. We release both the notebooks implemented to extend the Fairness tests and the synthetic datasets usable to evaluate systems bias independently of CheckList.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا