Do you want to publish a course? Click here

Solving Mixed (٠−١) Linear Integer Programming by using Lifting Gomory ’s Mixed Integer Cut

حل البرامج الخطية المختلطة (1-0) باستخدام طريقة غومري المعدلة

1494   0   20   0 ( 0 )
 Publication date 1998
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we solve Mixed (٠−١) Integer Programs by using Gomory’ s Method in solving Integer Linear Programs after lifting it.


Artificial intelligence review:
Research summary
في هذا البحث، يقدم الدكتور واجب غريبي طريقة لحل مسائل البرمجة الخطية المختلطة باستخدام طريقة غومري المعدلة. تتناول الورقة كيفية استخدام قواطع غومري لحل البرامج الخطية بقيم صحيحة بعد تعديلها. يوضح البحث الخطوات الأساسية لتوليد قاطع غومري مختلط عند عقدة معينة من شجرة البحث ورفعه ليصبح صالحًا في جميع أنحاء شجرة الفروع والقواطع. يركز البحث على تحسين الحدود في العديد من العقد من شجرة البحث من خلال استخدام القواطع المشتركة. كما يقدم البحث أمثلة توضيحية لتطبيق الطريقة على مسائل برمجة خطية مختلطة ويوضح كيفية حساب المعاملات المناسبة للمتغيرات لجعل القاطع صالحًا على مستوى شجرة البحث بالكامل.
Critical review
دراسة نقدية: يقدم هذا البحث مساهمة مهمة في مجال البرمجة الخطية المختلطة من خلال تعديل طريقة غومري لتصبح أكثر فعالية. ومع ذلك، يمكن أن يكون البحث أكثر شمولية إذا تم تضمين المزيد من الأمثلة العملية والتطبيقات الواقعية لتوضيح فعالية الطريقة المعدلة. كما أن الورقة تفتقر إلى مقارنة مفصلة مع الطرق الأخرى المستخدمة في حل نفس النوع من المسائل، مما كان يمكن أن يعزز من قوة الحجة المقدمة. بالإضافة إلى ذلك، يمكن تحسين الوضوح في بعض الأجزاء الرياضية المعقدة لتكون أكثر قابلية للفهم من قبل القراء غير المتخصصين.
Questions related to the research
  1. ما هي الطريقة المستخدمة في البحث لحل مسائل البرمجة الخطية المختلطة؟

    البحث يستخدم طريقة غومري المعدلة لحل مسائل البرمجة الخطية المختلطة.

  2. ما هو الهدف من تعديل طريقة غومري في هذا البحث؟

    الهدف هو جعل قواطع غومري صالحة في جميع أنحاء شجرة البحث لتحسين الحدود في العديد من العقد.

  3. ما هي الخطوات الأساسية لتوليد قاطع غومري مختلط؟

    الخطوات تشمل إيجاد الحل الأمثل للمسألة، إضافة متراجحة جديدة، واستمرار خطوات طريقة السيمبلكس لحل البرامج الخطية بقيم صحيحة.

  4. هل تم تقديم أمثلة توضيحية في البحث؟

    نعم، تم تقديم أمثلة توضيحية لتطبيق الطريقة على مسائل برمجة خطية مختلطة.


References used
E. Balas,S.Ceria and G. Cornuejols, ١٩٩٣- A lift-and—project cutting plane algorithm for mixed ٠−١ programs. Math. Programming
E. Balas ,S. Ceria and G. Cornuejols, N.Natraj,١٩٩٦-Gomory cuts revisited . Oper. Res
rate research

Read More

Given the diversity of the candidates and complexity of job requirements, and since interviewing is an inherently subjective process, it is an important task to ensure consistent, uniform, efficient and objective interviews that result in high qualit y recruitment. We propose an interview assistant system to automatically, and in an objective manner, select an optimal set of technical questions (from question banks) personalized for a candidate. This set can help a human interviewer to plan for an upcoming interview of that candidate. We formalize the problem of selecting a set of questions as an integer linear programming problem and use standard solvers to get a solution. We use knowledge graph as background knowledge in this formulation, and derive our objective functions and constraints from it. We use candidate's resume to personalize the selection of questions. We propose an intrinsic evaluation to compare a set of suggested questions with actually asked questions. We also use expert interviewers to comparatively evaluate our approach with a set of reasonable baselines.
This work deals with a new method for solving Integer Linear Programming Problems depending on a previous methods for solving these problems, such that Branch and Bound method and Cutting Planes method where this new method is a combination between t hem and we called it Cut and Branch method. The reasons which led to this combination between Cutting Planes method and Branch and Bound method are to defeat from the drawbacks of both methods and especially the big number of iterations and the long time for the solving and getting of a results between the results of these methods where the Cut and Branch method took the good properties from the both methods. And this work deals with solving a one problem of Integer Linear Programming Problems by Branch and Bound method and Cutting Planes method and the new method, and we made a programs on the computer for solving ten problems of Integer Linear Programming Problems by these methods then we got a good results and by that, the new method (Cut and Branch) became a good method for solving Integer Linear Programming Problems. The combination method which we doing in this research opened a big and wide field in solving Integer Linear Programming Problems and finding the best solutions for them where we did the combination method again between the new method (Cut and Branch) and the Cutting Planes method then we got a new method with a very good results and solutions.
In this paper we offer a new interactive method for solving Multiobjective linear programming problems. This method depends on forming the model for reducing the relative deviations of objective functions from their ideal standard, and dealing with the unsatisfying deviations of objective functions by reacting with decision maker. The results obtained from using this method were compared with many interactive methods as (STEM Method[6] – Improvement STEM Method[7] – Matejas-peric Method[8]). Numerical results indicate that the efficiency of purposed method comparing with the obtained results by using that methods at initial solution point and the other interactive points with decision maker.
In this paper, we find distributional solutions of boundary value problems in Sobolev spaces. This solution will be given as Fourier series with respect to the Eigen functions of a positive definite operator and its square roots. Then, we obtain solutions of such problems of a real order.
Machine translation of user-generated code-mixed inputs to English is of crucial importance in applications like web search and targeted advertising. We address the scarcity of parallel training data for training such models by designing a strategy o f converting existing non-code-mixed parallel data sources to code-mixed parallel data. We present an m-BERT based procedure whose core learnable component is a ternary sequence labeling model, that can be trained with a limited code-mixed corpus alone. We show a 5.8 point increase in BLEU on heavily code-mixed sentences by training a translation model using our data augmentation strategy on an Hindi-English code-mixed translation task.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا