Do you want to publish a course? Click here

Classification of Parallel Programming Models and Tools On Multi Core Computers

تصنيف نماذج و أدوات البرمجة المتوازية على الحواسيب متعددة النوى

2081   1   207   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

We introduce a taxonomic study of parallel programming models on High-Performance architectures. We review the parallel architectures(shared and distributed memory), and then the development of the architectures through the emergence of the heterogeneous and hybrid parallel architectures. We review important parallel programming model as the Partitioned Global Address Space (PGAS) model, as model for distributed memory architectures and the Data Flow model as model to heterogeneous and hybrid parallel programming. Finally we present several scenarios for the use of this taxonomic study.


Artificial intelligence review:
Research summary
يتناول هذا البحث دراسة تصنيفية لنماذج البرمجة المتوازية على بنى التنفيذ عالية الأداء، مع التركيز على مدى ملائمة هذه النماذج للبنى التقرعية المتنوعة مثل الذاكرة المشتركة والموزعة، بالإضافة إلى البنى غير المتجانسة والهجينة. يستعرض البحث تطور هذه البنى مع ظهور الحواسيب متعددة النوى، ويقدم نماذج برمجة متوازية مثل نموذج تدفق البيانات ونموذج PGAS. كما يقدم عدة سيناريوهات لاستخدام هذه الدراسة التصنيفية في تطبيقات عملية، ويصنف أدوات البرمجة المتوازية وفقاً للبنى التقرعية المختلفة، مثل مكتبة PThread وOpenMP وMPI، بالإضافة إلى بيئات التنفيذ المتوازية مثل X-KAAPI وStarPU. يهدف البحث إلى تقديم إجابات على أسئلة حول صلاحية نماذج وأدوات البرمجة المتوازية التقليدية على البنى التقرعية الحديثة المكونة من حواسيب متعددة النوى، ويختتم بتوصيات حول الاتجاهات المستقبلية في هذا المجال.
Critical review
دراسة نقدية: يقدم البحث دراسة شاملة ومفصلة لنماذج وأدوات البرمجة المتوازية، إلا أنه يمكن ملاحظة بعض النقاط التي قد تحتاج إلى تحسين. أولاً، البحث يعتمد بشكل كبير على المصادر النظرية دون تقديم أمثلة عملية كافية لتأكيد النتائج. ثانياً، التركيز على بعض النماذج والأدوات قد يكون غير متوازن، حيث تم التركيز بشكل أكبر على نماذج معينة مثل PGAS وOpenMP بينما تم تجاهل نماذج أخرى قد تكون ذات أهمية. ثالثاً، البحث يمكن أن يستفيد من تحليل أعمق لأداء النماذج المختلفة في سيناريوهات تطبيقية واقعية. وأخيراً، يمكن تحسين العرض البصري للمعلومات من خلال استخدام جداول ورسوم بيانية أكثر وضوحاً لتسهيل فهم القارئ.
Questions related to the research
  1. ما هي الأهداف الرئيسية لهذا البحث؟

    يهدف البحث إلى تصنيف نماذج البرمجة المتوازية وأدواتها على بنى التنفيذ عالية الأداء، وتقديم إجابات على مدى صلاحية نماذج وأدوات البرمجة المتوازية التقليدية على البنى التقرعية الحديثة المكونة من حواسيب متعددة النوى.

  2. ما هي البنى التقرعية التي تم استعراضها في البحث؟

    تم استعراض بنى الذاكرة المشتركة والموزعة، بالإضافة إلى البنى غير المتجانسة والهجينة.

  3. ما هي النماذج البرمجية المتوازية التي تم التركيز عليها في البحث؟

    تم التركيز على نماذج مثل نموذج تدفق البيانات ونموذج PGAS كنماذج للبرمجة المتوازية غير المتجانسة والهجينة.

  4. ما هي التوصيات المستقبلية التي قدمها البحث؟

    أوصى البحث بضرورة تأكيد النتائج النظرية من خلال أمثلة عملية، ودراسة إمكانية إيجاد نموذج برمجي جديد مستقل عن بيئة التنفيذ.


References used
GILES M,PATTERSON D,PFISTER H,PINTO N,STEINFAD TS,VALERO M,2010- Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann
DIAZ J, Munoz-Caro C, and NINO Al,2012, A Survey of Parallel Programming Models and Tools in the Multi and Many- Core Era. IEEE Tranc. On Parallel and Distributed Systems, Vol. 23. No.8
CHOUGULE MEENAL D , GUTTE PARASHANT H , 2014 , Parallel Programming Models: A Systematic Survey. International Journal of Computer Science and Information Technologies, Vol. 5 (4). 5268-5271
rate research

Read More

Large-scale document retrieval systems often utilize two styles of neural network models which live at two different ends of the joint computation vs. accuracy spectrum. The first style is dual encoder (or two-tower) models, where the query and docum ent representations are computed completely independently and combined with a simple dot product operation. The second style is cross-attention models, where the query and document features are concatenated in the input layer and all computation is based on the joint query-document representation. Dual encoder models are typically used for retrieval and deep re-ranking, while cross-attention models are typically used for shallow re-ranking. In this paper, we present a lightweight architecture that explores this joint cost vs. accuracy trade-off based on multi-vector attention (MVA). We thoroughly evaluate our method on the MS-MARCO passage retrieval dataset and show how to efficiently trade off retrieval accuracy with joint computation and offline document storage cost. We show that a highly compressed document representation and inexpensive joint computation can be achieved through a combination of learned pooling tokens and aggressive downprojection. Our code and model checkpoints are open-source and available on GitHub.
Multi-label emotion classification is an important task in NLP and is essential to many applications. In this work, we propose a sequence-to-emotion (Seq2Emo) approach, which implicitly models emotion correlations in a bi-directional decoder. Experim ents on SemEval'18 and GoEmotions datasets show that our approach outperforms state-of-the-art methods (without using external data). In particular, Seq2Emo outperforms the binary relevance (BR) and classifier chain (CC) approaches in a fair setting.
Open-domain extractive question answering works well on textual data by first retrieving candidate texts and then extracting the answer from those candidates. However, some questions cannot be answered by text alone but require information stored in tables. In this paper, we present an approach for retrieving both texts and tables relevant to a question by jointly encoding texts, tables and questions into a single vector space. To this end, we create a new multi-modal dataset based on text and table datasets from related work and compare the retrieval performance of different encoding schemata. We find that dense vector embeddings of transformer models outperform sparse embeddings on four out of six evaluation datasets. Comparing different dense embedding models, tri-encoders with one encoder for each question, text and table increase retrieval performance compared to bi-encoders with one encoder for the question and one for both text and tables. We release the newly created multi-modal dataset to the community so that it can be used for training and evaluation.
In this paper we offer a new interactive method for solving Multiobjective linear programming problems. This method depends on forming the model for reducing the relative deviations of objective functions from their ideal standard, and dealing with the unsatisfying deviations of objective functions by reacting with decision maker. The results obtained from using this method were compared with many interactive methods as (STEM Method[6] – Improvement STEM Method[7] – Matejas-peric Method[8]). Numerical results indicate that the efficiency of purposed method comparing with the obtained results by using that methods at initial solution point and the other interactive points with decision maker.
We introduce MULTI-EURLEX, a new multilingual dataset for topic classification of legal documents. The dataset comprises 65k European Union (EU) laws, officially translated in 23 languages, annotated with multiple labels from the EUROVOC taxonomy. We highlight the effect of temporal concept drift and the importance of chronological, instead of random splits. We use the dataset as a testbed for zero-shot cross-lingual transfer, where we exploit annotated training documents in one language (source) to classify documents in another language (target). We find that fine-tuning a multilingually pretrained model (XLM-ROBERTA, MT5) in a single source language leads to catastrophic forgetting of multilingual knowledge and, consequently, poor zero-shot transfer to other languages. Adaptation strategies, namely partial fine-tuning, adapters, BITFIT, LNFIT, originally proposed to accelerate fine-tuning for new end-tasks, help retain multilingual knowledge from pretraining, substantially improving zero-shot cross-lingual transfer, but their impact also depends on the pretrained model used and the size of the label set.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا