Do you want to publish a course? Click here

Analytical and Experimental Study of Structural and optical properties of ther

دراسة تحليلية و تجريبية للخصائص الضوئية و البنيوية للأغشية الرقيقة CdTe المرسبة بالتبخير الحراري

1683   0   5   0 ( 0 )
 Publication date 2012
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

CdTe Thin films were deposited on glass substrates by thermal evaporation method. The geometric thickness was calculated using interferometric method based on reflectance curve recorded with the spectrophotometer. The XRD analysis and optical characterizations of CdTe films with different optical thicknesses reveals that the structure of the films is polycrystalline with preferential orientation (111). The structure constant (a), crystallite size (D), dislocation density (δ) and strain (ε) were calculated, and it is observed that the crystallite size increases but micro-strain and dislocation density decreases with increases in thin film thickness. The overall absorbance has been increased with the film thickness and the direct band gap was obtained. It decreases with the increase in the thickness of the films.

References used
Cheng, J., Fan, D. Wang, H., Liu. B. W. (2003). Semicond. Sci. Technol. 18, 676
Shaaban, E. R., Afify, N., El-Taher. (2009). Effect of film thickness on microstructure parameter and optical constants of CdTe thin films Journal of Alloys and Compounds 482 , 400-404
Laitha, S., Karazhanov, S. Zh., Ravindran, P., Senthilarasu S. and all…., (2007). Electronic structure, structural and optical properties of thermally evaporated CdTe thin films. Physica B 38, 227-238
rate research

Read More

CdTe Thin films were deposited on silicon substrates by thermal evaporation method. The geometric thickness was calculated using interferometric method based on reflectance curve recorded with the spectrophotometer. The Reflection of High-Energy E lectron Diffraction (RHEED) patterns and XRD analysis reveals that the structure of the films are polycrystalline with preferential orientation (111). The structure constant (a), crystallite size (D), dislocation density (δ) and strain (ε) were calculated, and it is observed that the crystallite size increases but micro-strain and dislocation density decreases with increases in thin film thickness. The composition of the samples was determined by Energy Dispersive X-ray Analysis (EDX) and it is found that the wt.% of Cd increases and the wt.% of Te decreases with the increases of film thickness due to the re-evaporation of Te.
In this work, it has been recording the alpha particles emitted from an Amerecium-241 source, and scattered by a gold and Aluminum thin foils as a function of the scattering angle q (0o-30o), using a semiconductor detector and Rutherford scattering c hamber. It always has been measuring the differential cross section resulting from this scattering, and experimentally determining the atomic number of Gold and Aluminum. Comparison between experimental and theoretical results shows a good agreement.
In this paper we present the structural, optical and electrical characteristics of ZnO thin films grown for different parameters by the atomic layer deposition (ALD) method. The films were grown on glass and silicon substrates at low temperatures. We used diethyl-zinc (DEZn) and deionized water as zinc and an oxygen sources, respectively. Measurements of surface morphology, photoluminescence at room temperature (RT PL) and Hall Effect were made for ZnO layers. The films obtained at 130°C show the highest carrier concentration (1.1×1019 cm-3) and the lowest resistivity (2.84×10-2 Wcm). The films exhibit mobility up to 19.98 cm2/Vs that we associate to the technological process used.
In this work, we have used the basic techniques for measuring gamma rays. It is based on the use of a sodium iodide (NaI) detector withthallium activated (Tl). We have obtained:  The detector calibration NaI(Tl) and the resolution of the spectrom eter.  Measuring and determining the activity of a source can be doneby using the relative, and the absolute method. The results obtained show bythe Comparison between the experimental and the theoretical(of the sources activities)a good agreement, and the best values obtained by the absolute method.
Slabs are considered one of the most exposed elements to disasters and deformities that can be clear to the viewer. These deformities are reflected as sign of defects that appear clearly on big slabs. So, here comes the importance of applying and d esigning accurate slabs. The purpose of this research is stating the need for persistent efforts to get a better form of the slabs in order to increase their ability to be able to carry any outside extra weights without the appearance of any deformities that might take place during the period of investing the building. When deformities happen, they have bad effect on the beauty and main function (purpose) of the building. This research includes an experimental study for the real applicable slabs under our supervision, in addition to a theoretical study about the deflection appearing on the slabs by taking into consideration the plastic specifications of the concrete and the formation of cracks. This research aims at constructing reflexive deflections in the slabs during the construction period and measuring the actual deformities and watching them through a period of time, then comparing them with the theoretical expected deformities. The findings that we could get at the end of our research are supposed to play a main role in choosing the best design for the mandate slabs and at the same time getting the best value for the reflexive deflection that can be used in the slab to make it better functionally and to increase its ability to resist the outside applied weights. We hope this is just a start for more research in this field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا