Do you want to publish a course? Click here

Modification of Microstructure and Hardness Properties of Stainless Steel Through Thermomechanical Treatment

تطوير خواص البنية المكروية و القساوة للصلب المقاوم للصدأ من خلال المعالجة الميكانيكية الحرارية

1404   0   18   0 ( 0 )
 Publication date 2011
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The influence of thermomechanical treatments on the microstructural properties of stainless steel D9 alloy steel was studied.

References used
S.Venkadesan, A.K. Bhaduri, "Influence of hot rolling on microstructure of austenite", Nucl.Mater., vol.186,2000, PP 177- 184
A.K.Panda, p.K. Ray, "Effect of thermomechanical treatments on size and distribution of silicides and tensile properties of alloy Ti - 6AL - 5Zr - 0.5Mo - 0.25 Si", Mater.Sci.and Tech., vol.16, 2000, PP 696- 713
S.Venkadesan, "Processing of metals and advanced materials, modeling, design and properties", Indian Inst. of Tech, Madras, India, 2009, PP 306- 315
rate research

Read More

The aim of this work is to study the effect of the aging heat treatment on the pitting corrosion resistance of martensitic stainless steel. In this research a number of specimens from martensitic stainless steel were subjected to solution treatment a t 1050 for one hour followed by water quenching then aging in the temperatures range (400-750) for different holding times (1-16 hrs). After heat treatment, two types of corrosion tests (accelerated test and immersion test) were conducted. The results obtained in this research showed that the pitting corrosion resistance was affected by Aging temperature and three critical temperatures were found in corrosion test: the specimens aged at 475 0C had maximum corrosion rate. This may be due to the presence of stringer δ- ferrite and precipitation of very fine precipitates which precipitated heterogeneously in the martensitic matrix, which led to an increase in corrosion rate. The specimens aged at temperatures range (550 – 625) 0C had minimum values of corrosion rate, this is attributed to the high volume fraction of retained austenite. The specimens aged at temperatures above 625 had intermediate corrosion rate. The type of pits, which resulted from two pitting corrosion tests, was independent form the form of δ-ferrite and carbides which presence in microstructure.
In this work, Ck85 carbon steel was subjected to cyclic heat treatment. Process that consisted of cyclic short-duration (3.4 minutes) holding at 800 C (above Ac3 temperature) followed by forced air cooling. After 8 cycles (about a total 1 hour du ration of heating and cooling cyclic), the microstructure mostly contained fine ferrite grains and spheroidzed cementite. This microstructure possessed an excellent combination of strength and ductility. The disintegration of lamellar pearlite through dissolution of cementite at boundaries lamellar during short-duration holding above Ac3 temperature, and the generation of lamellar defects during nonequilibrium forced air cooling were the main reasons of accelerated spheroidization. The strength initially increased mainly due to the presence of finer microconstituents (ferrite and pearlite) and then marginally decreased with the elimination of lamellar pearlite and appearance of spheroid cementite in the microstructure.
Design of experiments (DOE) had been used in the study, and the results had been evaluated by the surface response method. The results showed that the welding current is the main parameter by its effect on the mechanical studied properties and the parameters values which give the best responses had been determined.
This research showed the great importance for following studies of the effect of polluted phosphoric acid, produced in General Fertilizer Company, on the high corrosion resisting alloys, to reach suitable alloys for equipments and machines used for its production, because of its high corrosion rates that create many corrosion problems in these equipments and machines.
In this research, specimens of aluminum alloy 6061 were received, and chemical composition was investigated. After that solution heat treatment was applied on it at 530°C, a section of these specimens was quenched in water and anther quenched in oil, and two sections were aged at 160°C for times (1,3,5 h), and thus obtained six samples differ in condition of heat treatment in addition to as received specimen.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا