Do you want to publish a course? Click here

Sentence-Permuted Paragraph Generation

جيل الفقرة المسموح بها

365   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Generating paragraphs of diverse contents is important in many applications. Existing generation models produce similar contents from homogenized contexts due to the fixed left-to-right sentence order. Our idea is permuting the sentence orders to improve the content diversity of multi-sentence paragraph. We propose a novel framework PermGen whose objective is to maximize the expected log-likelihood of output paragraph distributions with respect to all possible sentence orders. PermGen uses hierarchical positional embedding and designs new procedures for training, and decoding in the sentence-permuted generation. Experiments on three paragraph generation benchmarks demonstrate PermGen generates more diverse outputs with a higher quality than existing models.



References used
https://aclanthology.org/
rate research

Read More

We consider the problem of learning to simplify medical texts. This is important because most reliable, up-to-date information in biomedicine is dense with jargon and thus practically inaccessible to the lay audience. Furthermore, manual simplificati on does not scale to the rapidly growing body of biomedical literature, motivating the need for automated approaches. Unfortunately, there are no large-scale resources available for this task. In this work we introduce a new corpus of parallel texts in English comprising technical and lay summaries of all published evidence pertaining to different clinical topics. We then propose a new metric based on likelihood scores from a masked language model pretrained on scientific texts. We show that this automated measure better differentiates between technical and lay summaries than existing heuristics. We introduce and evaluate baseline encoder-decoder Transformer models for simplification and propose a novel augmentation to these in which we explicitly penalize the decoder for producing jargon'' terms; we find that this yields improvements over baselines in terms of readability.
Multiple-choice questions (MCQs) are widely used in knowledge assessment in educational institutions, during work interviews, in entertainment quizzes and games. Although the research on the automatic or semi-automatic generation of multiple-choice t est items has been conducted since the beginning of this millennium, most approaches focus on generating questions from a single sentence. In this research, a state-of-the-art method of creating questions based on multiple sentences is introduced. It was inspired by semantic similarity matches used in the translation memory component of translation management systems. The performance of two deep learning algorithms, doc2vec and SBERT, is compared for the paragraph similarity task. The experiments are performed on the ad-hoc corpus within the EU domain. For the automatic evaluation, a smaller corpus of manually selected matching paragraphs has been compiled. The results prove the good performance of Sentence Embeddings for the given task.
Idiomatic expressions (IE) play an important role in natural language, and have long been a pain in the neck'' for NLP systems. Despite this, text generation tasks related to IEs remain largely under-explored. In this paper, we propose two new tasks of idiomatic sentence generation and paraphrasing to fill this research gap. We introduce a curated dataset of 823 IEs, and a parallel corpus with sentences containing them and the same sentences where the IEs were replaced by their literal paraphrases as the primary resource for our tasks. We benchmark existing deep learning models, which have state-of-the-art performance on related tasks using automated and manual evaluation with our dataset to inspire further research on our proposed tasks. By establishing baseline models, we pave the way for more comprehensive and accurate modeling of IEs, both for generation and paraphrasing.
Searching for legal documents is a specialized Information Retrieval task that is relevant for expert users (lawyers and their assistants) and for non-expert users. By searching previous court decisions (cases), a user can better prepare the legal re asoning of a new case. Being able to search using a natural language text snippet instead of a more artificial query could help to prevent query formulation issues. Also, if semantic similarity could be modeled beyond exact lexical matches, more relevant results can be found even if the query terms don't match exactly. For this domain, we formulated a task to compare different ways of modeling semantic similarity at paragraph level, using neural and non-neural systems. We compared systems that encode the query and the search collection paragraphs as vectors, enabling the use of cosine similarity for results ranking. After building a German dataset for cases and statutes from Switzerland, and extracting citations from cases to statutes, we developed an algorithm for estimating semantic similarity at paragraph level, using a link-based similarity method. When evaluating different systems in this way, we find that semantic similarity modeling by neural systems can be boosted with an extended attention mask that quenches noise in the inputs.
For a computer to naturally interact with a human, it needs to be human-like. In this paper, we propose a neural response generation model with multi-task learning of generation and classification, focusing on emotion. Our model based on BART (Lewis et al., 2020), a pre-trained transformer encoder-decoder model, is trained to generate responses and recognize emotions simultaneously. Furthermore, we weight the losses for the tasks to control the update of parameters. Automatic evaluations and crowdsourced manual evaluations show that the proposed model makes generated responses more emotionally aware.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا