توليد الفقرات من المحتويات المتنوعة مهمة في العديد من التطبيقات.تنتج نماذج الجيل الموجودة محتويات مماثلة من السياقات المتجانسة بسبب ترتيب الجملة الثابتة إلى اليمين.تتبنى فكرتنا أوامر الجملة لتحسين تنوع المحتوى من الفقرة متعددة الجملة.نقترح برجعة إطار رواية يتمثل هدفها في تعظيم توزيعات الفقرة المتنقلة المتوقعة بزيادة توزيعات الفقرة المتوقعة فيما يتعلق بجميع أوامر الجملة الممكنة.يستخدم Permgen تضمينه الموضعي الهرمي وتصميم إجراءات جديدة للتدريب، وفك التشفير في الجيل المسموح به بالسجن.تجارب على ثلاث معايير توليد الفقرة إظهار برخصة تولد مخرجات أكثر تنوعا بجودة أعلى من النماذج الحالية.
Generating paragraphs of diverse contents is important in many applications. Existing generation models produce similar contents from homogenized contexts due to the fixed left-to-right sentence order. Our idea is permuting the sentence orders to improve the content diversity of multi-sentence paragraph. We propose a novel framework PermGen whose objective is to maximize the expected log-likelihood of output paragraph distributions with respect to all possible sentence orders. PermGen uses hierarchical positional embedding and designs new procedures for training, and decoding in the sentence-permuted generation. Experiments on three paragraph generation benchmarks demonstrate PermGen generates more diverse outputs with a higher quality than existing models.
References used
https://aclanthology.org/
We consider the problem of learning to simplify medical texts. This is important because most reliable, up-to-date information in biomedicine is dense with jargon and thus practically inaccessible to the lay audience. Furthermore, manual simplificati
Multiple-choice questions (MCQs) are widely used in knowledge assessment in educational institutions, during work interviews, in entertainment quizzes and games. Although the research on the automatic or semi-automatic generation of multiple-choice t
Idiomatic expressions (IE) play an important role in natural language, and have long been a pain in the neck'' for NLP systems. Despite this, text generation tasks related to IEs remain largely under-explored. In this paper, we propose two new tasks
Searching for legal documents is a specialized Information Retrieval task that is relevant for expert users (lawyers and their assistants) and for non-expert users. By searching previous court decisions (cases), a user can better prepare the legal re
For a computer to naturally interact with a human, it needs to be human-like. In this paper, we propose a neural response generation model with multi-task learning of generation and classification, focusing on emotion. Our model based on BART (Lewis