Do you want to publish a course? Click here

Employing Data Mining Algorithms in Traffic Accidents Analyzing

توظيف خوارزميات التنقيب في البيانات لتحليل حوادث المرور

6307   17   626   0 ( 0 )
 Publication date 2015
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we introduce a comparison for some of data mining algorithm for traffic accidents analysis. We start by describing available data for entry by analyzing the structure of statistical reports in Lattakia traffic directorate, and proceed to data mining stage which enables us to smart study of factors that play roles in traffic accident and find its inter-relations and importance for causing traffic accident. That comes after building data warehouse upon the database we built to store the data we gathered. In this research we list a some of models was tested which is a sample of a many cases we checked to have the research results.


Artificial intelligence review:
Research summary
تقدم هذه الورقة البحثية مقارنة لمجموعة من خوارزميات التنقيب في البيانات لتحليل حوادث المرور، بدءًا من مرحلة إدخال البيانات وتحليل بنية التقارير الإحصائية في فرع مرور اللاذقية، وصولاً إلى مرحلة التنقيب في البيانات. تهدف الدراسة إلى إيجاد آلية ذكية لدراسة العوامل التي تلعب دورًا في حوادث المرور وربطها ببعضها البعض لتحديد مدى العلاقة بينها وأهميتها في التسبب بالحوادث. تم تصميم بنية مستودع البيانات على أساس قاعدة البيانات التي تم بناؤها لتخزين المعلومات، وتم اختبار مجموعة من النماذج التي تشكل عينة من الاختبارات التي بنيت عليها نتائج البحث. استخدمت الدراسة خوارزميات التصنيف، العنقدة، وقواعد الاقتران لتحليل البيانات، وتم تطبيق النماذج على برنامج SPSS Clementine V.12. أظهرت النتائج أن خوارزميات CART وCHAID كانت الأفضل في تصنيف البيانات، بينما كانت خوارزمية Two Step الأفضل في تحليل قيم حوادث المرور. أوصت الدراسة بضرورة اعتماد نموذج علمي مناسب لتسجيل بيانات حوادث المرور وتأهيل الكادر البشري في مديريات المرور، بالإضافة إلى الإسراع في اعتماد نظام معلوماتي لتخزين بيانات الحوادث.
Critical review
تعد هذه الدراسة خطوة مهمة في مجال تحليل حوادث المرور باستخدام خوارزميات التنقيب في البيانات، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الأفضل توسيع نطاق الدراسة ليشمل مناطق أخرى في سوريا لتعميم النتائج. ثانيًا، لم يتم التطرق بشكل كافٍ إلى تأثير العوامل البيئية والاجتماعية على حوادث المرور، مما قد يضيف قيمة إضافية للبحث. ثالثًا، كان من الممكن تحسين منهجية جمع البيانات لتشمل بيانات أكثر تفصيلًا ودقة. وأخيرًا، كان من المفيد تقديم توصيات عملية أكثر تحديدًا لمتخذي القرار بناءً على النتائج المستخلصة من الدراسة.
Questions related to the research
  1. ما هي الخوارزميات التي تم استخدامها في الدراسة لتحليل حوادث المرور؟

    تم استخدام خوارزميات التصنيف مثل CART وCHAID وSVM، وخوارزميات العنقدة مثل K-means وTwo-step وKohonen، وخوارزميات قواعد الاقتران مثل Apriori وGRI.

  2. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    أظهرت الدراسة أن خوارزميات CART وCHAID كانت الأفضل في تصنيف البيانات، بينما كانت خوارزمية Two Step الأفضل في تحليل قيم حوادث المرور.

  3. ما هي التوصيات التي قدمتها الدراسة لتحسين نظام تسجيل وتحليل بيانات حوادث المرور؟

    أوصت الدراسة بضرورة اعتماد نموذج علمي مناسب لتسجيل بيانات حوادث المرور، وتأهيل الكادر البشري في مديريات المرور، والإسراع في اعتماد نظام معلوماتي لتخزين بيانات الحوادث.

  4. ما هي الأدوات البرمجية التي تم استخدامها في الدراسة لتطبيق خوارزميات التنقيب في البيانات؟

    تم استخدام برنامج SPSS Clementine V.12 لتطبيق خوارزميات التنقيب في البيانات.


References used
(SUKHAI ,ANESH., P JONES,ANDY., HAYNES ,ROBIN., “Epidemiology And Risk Of Road Traffic Mortality In South Africa.” South African Geographical Journal 91 (1) 4 – 15 (2009
(World Health Organaizaton, www.who.org, “World report on road traffic injury prevention summary” (2004
(Alex, A.Freitas., “A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery.” Postgraduate Program in Computer Science,Pontificia Universidade Catolica do Parana Rua Imaculada Cnceicao,1155 (2011
rate research

Read More

In this research, we offered a new and simple way of Handwriting Characters Recognition. This way extracts positions of the black points from binary images (black, white) according to certain coordinates which are used in the stages of training an d testing. The extracted positions are stored in a database according to appropriate structure for predictive data mining. We used training data to build a predictive model which helps in Recognition testing data depending on the data stored in the database. We have conducted a number of tests on different samples of handwriting character images. We got accurate results, within the required conditions.
This study aims to measure and analyse the social and economical cost of Traffic Accidents in the Hashimyat Jordanian Kingdom governorates. The Study employs the descriptive approach to achieve its goals. Data information were collected from thei r origins and processed employing the techniques: partial correlation, multiple regression, and sum of ranke analysis. The study concluded the existence of differences in the social and economic costs of traffic accidents between the Kingdom governorates and this difference is related differences in population figures, number of registed vehicles, and traffic accident counts. The study, classified the kingdom governorates according to the levels of socio economic costs into three levels: High cost level, medium and low.
The advances in location-acquisition and mobile computing techniques have generated massive spatial trajectory data, which represent the mobility of a diversity of moving objects, such as people, vehicles and animals. Many techniques have been propos ed for processing, managing and mining trajectory data in the past decade, fostering a broad range of applications. In this article, we conduct a systematic survey on the major research into trajectory data mining, providing a panorama of the field as well as the scope of its research topics. Following a roadmap from the derivation of trajectory data, to trajectory data preprocessing, to trajectory data management, and to a variety of mining tasks (such as trajectory pattern mining, outlier detection, and trajectory classification), the survey explores the connections, correlations and differences among these existing techniques. This survey also introduces the methods that transform trajectories into other data formats, such as graphs, matrices, and tensors, to which more data mining and machine learning techniques can be applied. Finally, some public trajectory datasets are presented. This survey can help shape the field of trajectory data mining, providing a quick understanding of this field to the community.
Data mining is becoming a pervasive technology in activities as diverse as using historical data to predict the success of a marketing campaign looking for patterns in financial transactions to discover illegal activities. From this perspective it wa s just a matter of time for the discipline to reach the important area of computer security This research presents a collection of research efforts on the use of data mining in computer security.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا