تُشكِّل العلاقة بين الهطول المطري_الجريان النهري Rainfall_Runoff (R_R إحدى المركبات الأساسية لدورة المياه في الطبيعة، كما أنها تُشكّل واحدة من أكثر الظواهر الهيدرولوجية تعقيداً و صعوبةً في الفهم؛ و ذلك بسبب كثرة عدد البارامترات المتضمَّنة في نمذجة العمليات الفيزيائية و بسبب اتساع فضائها البارامتري و التغير المؤقت في مواصفات الحوض، إضافةً إلى تعدد نماذج الهطولات المطرية. هذا و تعدُّ نمذجة العلاقة بين الهطول المطري _الجريان النهري مهمة جدّاً من أجل التصميم الهندسي و الإدارة المتكاملة للموارد المائية، إضافةً إلى التنبؤ بالفيضان و درء مخاطره. حيث يهدف هذا البحث إلى نمذجة العلاقة بين الهطول المطري_الجريان النهري في حوض نهر الكبير الجنوبي في سوريا، بالاعتماد على تقانة الشبكة العصبونية الصنعية (ANN) Artificial Neural Network، حيث بُني النموذج الرياضي باستخدام كلٍّ من nntool وntstool مكتبتين ملحقتين ببرنامج الماتلاب، و اعتمد النموذج على البيانات اليومية للهطول المطري، درجة حرارة الهواء، الرطوبة النسبية و التبخر في المحطات المناخية المنتشرة في الحوض، كما استُخدِمت بيانات الجريان النهري اليومية لغرض التحقق من صحة أداء الشبكة باستخدام تقانة Simulink المتاحة في حزمة برمجيات الماتلاب.
أثبتت نتائج الدراسة أنَّ تقانة الشبكة العصبونية الصنعيَّة تعطي نتائج جيدة في نمذجة العلاقة بين الهطول المطري_الجريان النهري، اعتماداً على مجموعة البيانات المستخدَمة، و بالتالي يمكن اعتبارها بديلاً للطرائق التقليدية في نمذجة العلاقة R_R.
The relation between rainfall and runoff forms one of the main hydrological cycle elements. It is one of the most complex hydrological phenomena because of the great numbers of parameters used in modeling the physical processes, the expansion of their parameter space, and the temporary change in watershed specifications. Thus, modeling the relation between rainfall and runoff is necessary for hydrological and hydraulic engineering design, integrated management of water resourses, and forecasting flood and preventing its dangers. This research aims at modeling the relation between rainfall and runoff in Alkabeer Aljononbee catchment. It depends on the technique of Artificial Neural Network (ANN). The mathematical model was built by the ntstool and nntool available in the Matlab program. This model depends on daily rainfall, evaporation, air temperature, and relative humidity data taken from meteorological stations that are distributed in the watershed. The daily runoff data have also been used for checking the performance accuracy of the network, using the Simulink technique. The results of this research confirm that artificial neural network technology offers good results in modeling the relation rainfall-runoff, depending on the set of data used. So it could be a better alternative than traditional approaches.
References used
Rientjes, T. H. M.؛ De Vos, N. J. Constraints of artificial neural networks for rainfallrunoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrology and Earth System Sciences Discussions Belgium, 2005, 365– 415
Abbott, M. B.؛ Bathurst, J. C.؛ Cunge, J. A.؛ O’Connell, P. E.؛ Rasmussen, J. An introduction to the european hydrological system – Syste`me Hydrologique Europe´en, “SHE”, 2: Structure of a physically-based, distributed modelling system. 1986, 61–77
Nash, J. E.؛ Sutcliffe, J. V. River flow forecasting through conceptual models. Journal of Hydrology1970, 282–290
Modarres, R. Multi-criteria validation of artificial neural network rainfall-runoff modeling. Hydrologu & Earth System Science Iran, 2009, 411-421
The relationship between precipitation and surface runoff is one of
the fundamental components of the hydrological cycle of water in
nature and is one of the most complex and difficult to understand
because of the large number of parameters involv
Accurately modeling rainfall-runoff (R-R) transform remains a challenging task despite that a wide range of modeling, either knowledge-driven or data-driven. knowledge-driven models need a large amount of parameters, so it suffers from plenty numbers
This study has reached to that ANN (5-9-1) (five neurons in input
layer_nine neurons in hidden layer _ one neuron in output layer) is the
optimum artificial network that hybrid system has reached to it with
mean squared error equals (1*10^-4) (0.7
The Alsafarqieh watershed is located on the western slopes of the coastal mountain range,
Its area is 132.58 km2, It forms a part of the Alros river basin, The river starts at a height of
1200 m, A group of tributaries meet and form the Alros River
the aim of this study is
determination of the most influential climatic factors in the rainfall
runoff relationship in Al-Kabir Al-shimalee river using artificial
neural networks. The inputs included Precipitation, runoff, in
different delays, in