Do you want to publish a course? Click here

Integrated taxonomy of errors in chat-oriented dialogue systems

التصنيف المتكامل للأخطاء في أنظمة الحوار الموجهة للدردشة

354   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper proposes a taxonomy of errors in chat-oriented dialogue systems. Previously, two taxonomies were proposed; one is theory-driven and the other data-driven. The former suffers from the fact that dialogue theories for human conversation are often not appropriate for categorizing errors made by chat-oriented dialogue systems. The latter has limitations in that it can only cope with errors of systems for which we have data. This paper integrates these two taxonomies to create a comprehensive taxonomy of errors in chat-oriented dialogue systems. We found that, with our integrated taxonomy, errors can be reliably annotated with a higher Fleiss' kappa compared with the previously proposed taxonomies.

References used
https://aclanthology.org/
rate research

Read More

Recent task-oriented dialogue systems learn a model from annotated dialogues, and such dialogues are in turn collected and annotated so that they are consistent with certain domain knowledge. However, in real scenarios, domain knowledge is subject to frequent changes, and initial training dialogues may soon become obsolete, resulting in a significant decrease in the model performance. In this paper, we investigate the relationship between training dialogues and domain knowledge, and propose Dialogue Domain Adaptation, a methodology aiming at adapting initial training dialogues to changes intervened in the domain knowledge. We focus on slot-value changes (e.g., when new slot values are available to describe domain entities) and define an experimental setting for dialogue domain adaptation. First, we show that current state-of-the-art models for dialogue state tracking are still poorly robust to slot-value changes of the domain knowledge. Then, we compare different domain adaptation strategies, showing that simple techniques are effective to reduce the gap between training dialogues and domain knowledge.
Continual learning in task-oriented dialogue systems allows the system to add new domains and functionalities overtime after deployment, without incurring the high cost of retraining the whole system each time. In this paper, we propose a first-ever continual learning benchmark for task-oriented dialogue systems with 37 domains to be learned continuously in both modularized and end-to-end learning settings. In addition, we implement and compare multiple existing continual learning baselines, and we propose a simple yet effective architectural method based on residual adapters. We also suggest that the upper bound performance of continual learning should be equivalent to multitask learning when data from all domain is available at once. Our experiments demonstrate that the proposed architectural method and a simple replay-based strategy perform better, by a large margin, compared to other continuous learning techniques, and only slightly worse than the multitask learning upper bound while being 20X faster in learning new domains. We also report several trade-offs in terms of parameter usage, memory size and training time, which are important in the design of a task-oriented dialogue system. The proposed benchmark is released to promote more research in this direction.
Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user simulators have their own problems. While hand-coded, rule-based user simulators have been shown to be sufficient in small, simple domains, for complex domains the number of rules quickly becomes intractable. State-of-the-art data-driven user simulators, on the other hand, are still domain-dependent. This means that adaptation to each new domain requires redesigning and retraining. In this work, we propose a domain-independent transformer-based user simulator (TUS). The structure of TUS is not tied to a specific domain, enabling domain generalization and the learning of cross-domain user behaviour from data. We compare TUS with the state-of-the-art using automatic as well as human evaluations. TUS can compete with rule-based user simulators on pre-defined domains and is able to generalize to unseen domains in a zero-shot fashion.
In goal-oriented dialogue systems, users provide information through slot values to achieve specific goals. Practically, some combinations of slot values can be invalid according to external knowledge. For example, a combination of cheese pizza'' (a menu item) and oreo cookies'' (a topping) from an input utterance Can I order a cheese pizza with oreo cookies on top?'' exemplifies such invalid combinations according to the menu of a restaurant business. Traditional dialogue systems allow execution of validation rules as a post-processing step after slots have been filled which can lead to error accumulation. In this paper, we formalize knowledge-driven slot constraints and present a new task of constraint violation detection accompanied with benchmarking data. Then, we propose methods to integrate the external knowledge into the system and model constraint violation detection as an end-to-end classification task and compare it to the traditional rule-based pipeline approach. Experiments on two domains of the MultiDoGO dataset reveal challenges of constraint violation detection and sets the stage for future work and improvements.
This paper aims at providing a comprehensive overview of recent developments in dialogue state tracking (DST) for task-oriented conversational systems. We introduce the task, the main datasets that have been exploited as well as their evaluation metr ics, and we analyze several proposed approaches. We distinguish between static ontology DST models, which predict a fixed set of dialogue states, and dynamic ontology models, which can predict dialogue states even when the ontology changes. We also discuss the model's ability to track either single or multiple domains and to scale to new domains, both in terms of knowledge transfer and zero-shot learning. We cover a period from 2013 to 2020, showing a significant increase of multiple domain methods, most of them utilizing pre-trained language models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا