Do you want to publish a course? Click here

Leveraging Order-Free Tag Relations for Context-Aware Recommendation

الاستفادة من العلاقات العلامة المجانية للطلب للحصول على توصية السياق

294   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Tag recommendation relies on either a ranking function for top-k tags or an autoregressive generation method. However, the previous methods neglect one of two seemingly conflicting yet desirable characteristics of a tag set: orderlessness and inter-dependency. While the ranking approach fails to address the inter-dependency among tags when they are ranked, the autoregressive approach fails to take orderlessness into account because it is designed to utilize sequential relations among tokens. We propose a sequence-oblivious generation method for tag recommendation, in which the next tag to be generated is independent of the order of the generated tags and the order of the ground truth tags occurring in training data. Empirical results on two different domains, Instagram and Stack Overflow, show that our method is significantly superior to the previous approaches.



References used
https://aclanthology.org/
rate research

Read More

Free legal assistance is critically under-resourced, and many of those who seek legal help have their needs unmet. A major bottleneck in the provision of free legal assistance to those most in need is the determination of the precise nature of the le gal problem. This paper describes a collaboration with a major provider of free legal assistance, and the deployment of natural language processing models to assign area-of-law categories to real-world requests for legal assistance. In particular, we focus on an investigation of models to generate efficiencies in the triage process, but also the risks associated with naive use of model predictions, including fairness across different user demographics.
Traditional synonym recommendations often include ill-suited suggestions for writer's specific contexts. We propose a simple approach for contextual synonym recommendation by combining existing human-curated thesauri, e.g. WordNet, with pre-trained l anguage models. We evaluate our technique by curating a set of word-sentence pairs balanced across corpora and parts of speech, then annotating each word-sentence pair with the contextually appropriate set of synonyms. We found that basic language model approaches have higher precision. Approaches leveraging sentence context have higher recall. Overall, the latter contextual approach had the highest F-score.
Impressive milestones have been achieved in text matching by adopting a cross-attention mechanism to capture pertinent semantic connections between two sentence representations. However, regular cross-attention focuses on word-level links between the two input sequences, neglecting the importance of contextual information. We propose a context-aware interaction network (COIN) to properly align two sequences and infer their semantic relationship. Specifically, each interaction block includes (1) a context-aware cross-attention mechanism to effectively integrate contextual information when aligning two sequences, and (2) a gate fusion layer to flexibly interpolate aligned representations. We apply multiple stacked interaction blocks to produce alignments at different levels and gradually refine the attention results. Experiments on two question matching datasets and detailed analyses demonstrate the effectiveness of our model.
Recently, sponsored search has become one of the most lucrative channels for marketing. As the fundamental basis of sponsored search, relevance modeling has attracted increasing attention due to the tremendous practical value. Most existing methods s olely rely on the query-keyword pairs. However, keywords are usually short texts with scarce semantic information, which may not precisely reflect the underlying advertising intents. In this paper, we investigate the novel problem of advertiser-aware relevance modeling, which leverages the advertisers' information to bridge the gap between the search intents and advertising purposes. Our motivation lies in incorporating the unsupervised bidding behaviors as the complementary graphs to learn desirable advertiser representations. We further propose a Bidding-Graph augmented Triple-based Relevance model BGTR with three towers to deeply fuse the bidding graphs and semantic textual data. Empirically, we evaluate the BGTR model over a large industry dataset, and the experimental results consistently demonstrate its superiority.
Previous existing visual question answering (VQA) systems commonly use graph neural networks(GNNs) to extract visual relationships such as semantic relations or spatial relations. However, studies that use GNNs typically ignore the importance of each relation and simply concatenate outputs from multiple relation encoders. In this paper, we propose a novel layer architecture that fuses multiple visual relations through an attention mechanism to address this issue. Specifically, we develop a model that uses question embedding and joint embedding of the encoders to obtain dynamic attention weights with regard to the type of questions. Using the learnable attention weights, the proposed model can efficiently use the necessary visual relation features for a given question. Experimental results on the VQA 2.0 dataset demonstrate that the proposed model outperforms existing graph attention network-based architectures. Additionally, we visualize the attention weight and show that the proposed model assigns a higher weight to relations that are more relevant to the question.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا