تم تحقيق معالم رائعة في نص مطابقة من خلال اعتماد آلية انتباه متقاطعة لالتقاط الروابط الدلالية ذات الصلة بين تمثيلين عقديين.ومع ذلك، يركز الاهتمام العادي عبر مستوى الروابط على مستوى الكلمات بين تسلسل المدخلات، وإهمال أهمية المعلومات السياقية.نقترح شبكة التفاعل المعرفة في السياق (عملة معدنية) لمحاذاة متسلسلتين بشكل صحيح وتستنتج علاقتها الدلالية.على وجه التحديد، يتضمن كل كتلة تفاعل (1) آلية اعتبارية إعلامية في السياق لإدماج المعلومات السياقية بفعالية عند محاذاة متتسلالات، و (2) طبقة انصهار بوابة لتمثيلات محاذاة محاذاة مرنة.نحن نطبق كتل تفاعلية مكدسة متعددة لإنتاج محاذاة على مستويات مختلفة وتحسين نتائج الانتباه تدريجيا.تجارب على اثنين من مجموعات بيانات مطابقة الأسئلة والتحليلات التفصيلية توضح فعالية نموذجنا.
Impressive milestones have been achieved in text matching by adopting a cross-attention mechanism to capture pertinent semantic connections between two sentence representations. However, regular cross-attention focuses on word-level links between the two input sequences, neglecting the importance of contextual information. We propose a context-aware interaction network (COIN) to properly align two sequences and infer their semantic relationship. Specifically, each interaction block includes (1) a context-aware cross-attention mechanism to effectively integrate contextual information when aligning two sequences, and (2) a gate fusion layer to flexibly interpolate aligned representations. We apply multiple stacked interaction blocks to produce alignments at different levels and gradually refine the attention results. Experiments on two question matching datasets and detailed analyses demonstrate the effectiveness of our model.
References used
https://aclanthology.org/
Implicit discourse relation recognition (IDRR) aims to identify logical relations between two adjacent sentences in the discourse. Existing models fail to fully utilize the contextual information which plays an important role in interpreting each loc
In Visual Question Answering (VQA), existing bilinear methods focus on the interaction between images and questions. As a result, the answers are either spliced into the questions or utilized as labels only for classification. On the other hand, tril
Generating texts in scientific papers requires not only capturing the content contained within the given input but also frequently acquiring the external information called context. We push forward the scientific text generation by proposing a new ta
In this paper, we focus on the problem of keyword and document matching by considering different relevance levels. In our recommendation system, different people follow different hot keywords with interest. We need to attach documents to each keyword
Tag recommendation relies on either a ranking function for top-k tags or an autoregressive generation method. However, the previous methods neglect one of two seemingly conflicting yet desirable characteristics of a tag set: orderlessness and inter-d