Do you want to publish a course? Click here

Learning to Select Question-Relevant Relations for Visual Question Answering

تعلم تحديد العلاقات ذات الصلة بالسؤال للحصول على سؤال مرئي

403   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Previous existing visual question answering (VQA) systems commonly use graph neural networks(GNNs) to extract visual relationships such as semantic relations or spatial relations. However, studies that use GNNs typically ignore the importance of each relation and simply concatenate outputs from multiple relation encoders. In this paper, we propose a novel layer architecture that fuses multiple visual relations through an attention mechanism to address this issue. Specifically, we develop a model that uses question embedding and joint embedding of the encoders to obtain dynamic attention weights with regard to the type of questions. Using the learnable attention weights, the proposed model can efficiently use the necessary visual relation features for a given question. Experimental results on the VQA 2.0 dataset demonstrate that the proposed model outperforms existing graph attention network-based architectures. Additionally, we visualize the attention weight and show that the proposed model assigns a higher weight to relations that are more relevant to the question.



References used
https://aclanthology.org/
rate research

Read More

Information seeking is an essential step for open-domain question answering to efficiently gather evidence from a large corpus. Recently, iterative approaches have been proven to be effective for complex questions, by recursively retrieving new evide nce at each step. However, almost all existing iterative approaches use predefined strategies, either applying the same retrieval function multiple times or fixing the order of different retrieval functions, which cannot fulfill the diverse requirements of various questions. In this paper, we propose a novel adaptive information-seeking strategy for open-domain question answering, namely AISO. Specifically, the whole retrieval and answer process is modeled as a partially observed Markov decision process, where three types of retrieval operations (e.g., BM25, DPR, and hyperlink) and one answer operation are defined as actions. According to the learned policy, AISO could adaptively select a proper retrieval action to seek the missing evidence at each step, based on the collected evidence and the reformulated query, or directly output the answer when the evidence set is sufficient for the question. Experiments on SQuAD Open and HotpotQA fullwiki, which serve as single-hop and multi-hop open-domain QA benchmarks, show that AISO outperforms all baseline methods with predefined strategies in terms of both retrieval and answer evaluations.
Many datasets have been created for training reading comprehension models, and a natural question is whether we can combine them to build models that (1) perform better on all of the training datasets and (2) generalize and transfer better to new dat asets. Prior work has addressed this goal by training one network simultaneously on multiple datasets, which works well on average but is prone to over- or under-fitting different sub- distributions and might transfer worse compared to source models with more overlap with the target dataset. Our approach is to model multi-dataset question answering with an ensemble of single-dataset experts, by training a collection of lightweight, dataset-specific adapter modules (Houlsby et al., 2019) that share an underlying Transformer model. We find that these Multi-Adapter Dataset Experts (MADE) outperform all our baselines in terms of in-distribution accuracy, and simple methods based on parameter-averaging lead to better zero-shot generalization and few-shot transfer performance, offering a strong and versatile starting point for building new reading comprehension systems.
Pre-trained language-vision models have shown remarkable performance on the visual question answering (VQA) task. However, most pre-trained models are trained by only considering monolingual learning, especially the resource-rich language like Englis h. Training such models for multilingual setups demand high computing resources and multilingual language-vision dataset which hinders their application in practice. To alleviate these challenges, we propose a knowledge distillation approach to extend an English language-vision model (teacher) into an equally effective multilingual and code-mixed model (student). Unlike the existing knowledge distillation methods, which only use the output from the last layer of the teacher network for distillation, our student model learns and imitates the teacher from multiple intermediate layers (language and vision encoders) with appropriately designed distillation objectives for incremental knowledge extraction. We also create the large-scale multilingual and code-mixed VQA dataset in eleven different language setups considering the multiple Indian and European languages. Experimental results and in-depth analysis show the effectiveness of the proposed VQA model over the pre-trained language-vision models on eleven diverse language setups.
Large pre-trained language models (PLMs) have led to great success on various commonsense question answering (QA) tasks in an end-to-end fashion. However, little attention has been paid to what commonsense knowledge is needed to deeply characterize t hese QA tasks. In this work, we proposed to categorize the semantics needed for these tasks using the SocialIQA as an example. Building upon our labeled social knowledge categories dataset on top of SocialIQA, we further train neural QA models to incorporate such social knowledge categories and relation information from a knowledge base. Unlike previous work, we observe our models with semantic categorizations of social knowledge can achieve comparable performance with a relatively simple model and smaller size compared to other complex approaches.
In Visual Question Answering (VQA), existing bilinear methods focus on the interaction between images and questions. As a result, the answers are either spliced into the questions or utilized as labels only for classification. On the other hand, tril inear models such as the CTI model efficiently utilize the inter-modality information between answers, questions, and images, while ignoring intra-modality information. Inspired by this observation, we propose a new trilinear interaction framework called MIRTT (Learning Multimodal Interaction Representations from Trilinear Transformers), incorporating the attention mechanisms for capturing inter-modality and intra-modality relationships. Moreover, we design a two-stage workflow where a bilinear model reduces the free-form, open-ended VQA problem into a multiple-choice VQA problem. Furthermore, to obtain accurate and generic multimodal representations, we pre-train MIRTT with masked language prediction. Our method achieves state-of-the-art performance on the Visual7W Telling task and VQA-1.0 Multiple Choice task and outperforms bilinear baselines on the VQA-2.0, TDIUC and GQA datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا