Do you want to publish a course? Click here

Improving Synonym Recommendation Using Sentence Context

تحسين توصية مرادف باستخدام سياق الجملة

255   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Traditional synonym recommendations often include ill-suited suggestions for writer's specific contexts. We propose a simple approach for contextual synonym recommendation by combining existing human-curated thesauri, e.g. WordNet, with pre-trained language models. We evaluate our technique by curating a set of word-sentence pairs balanced across corpora and parts of speech, then annotating each word-sentence pair with the contextually appropriate set of synonyms. We found that basic language model approaches have higher precision. Approaches leveraging sentence context have higher recall. Overall, the latter contextual approach had the highest F-score.



References used
https://aclanthology.org/
rate research

Read More

The quality of fully automated text simplification systems is not good enough for use in real-world settings; instead, human simplifications are used. In this paper, we examine how to improve the cost and quality of human simplifications by leveragin g crowdsourcing. We introduce a graph-based sentence fusion approach to augment human simplifications and a reranking approach to both select high quality simplifications and to allow for targeting simplifications with varying levels of simplicity. Using the Newsela dataset (Xu et al., 2015) we show consistent improvements over experts at varying simplification levels and find that the additional sentence fusion simplifications allow for simpler output than the human simplifications alone.
How do people understand the meaning of the word small'' when used to describe a mosquito, a church, or a planet? While humans have a remarkable ability to form meanings by combining existing concepts, modeling this process is challenging. This paper addresses that challenge through CEREBRA (Context-dEpendent meaning REpresentations in the BRAin) neural network model. CEREBRA characterizes how word meanings dynamically adapt in the context of a sentence by decomposing sentence fMRI into words and words into embodied brain-based semantic features. It demonstrates that words in different contexts have different representations and the word meaning changes in a way that is meaningful to human subjects. CEREBRA's context-based representations can potentially be used to make NLP applications more human-like.
Tag recommendation relies on either a ranking function for top-k tags or an autoregressive generation method. However, the previous methods neglect one of two seemingly conflicting yet desirable characteristics of a tag set: orderlessness and inter-d ependency. While the ranking approach fails to address the inter-dependency among tags when they are ranked, the autoregressive approach fails to take orderlessness into account because it is designed to utilize sequential relations among tokens. We propose a sequence-oblivious generation method for tag recommendation, in which the next tag to be generated is independent of the order of the generated tags and the order of the ground truth tags occurring in training data. Empirical results on two different domains, Instagram and Stack Overflow, show that our method is significantly superior to the previous approaches.
This paper describes our system (IREL) for 3C-Citation Context Classification shared task of the Scholarly Document Processing Workshop at NAACL 2021. We participated in both subtask A and subtask B. Our best system achieved a Macro F1 score of 0.269 73 on the private leaderboard for subtask A and was ranked one. For subtask B our best system achieved a Macro F1 score of 0.59071 on the private leaderboard and was ranked two. We used similar models for both the subtasks with some minor changes, as discussed in this paper. Our best performing model for both the subtask was a finetuned SciBert model followed by a linear layer. This paper provides a detailed description of all the approaches we tried and their results.
We study the problem of Cross-lingual Event Argument Extraction (CEAE). The task aims to predict argument roles of entity mentions for events in text, whose language is different from the language that a predictive model has been trained on. Previous work on CEAE has shown the cross-lingual benefits of universal dependency trees in capturing shared syntactic structures of sentences across languages. In particular, this work exploits the existence of the syntactic connections between the words in the dependency trees as the anchor knowledge to transfer the representation learning across languages for CEAE models (i.e., via graph convolutional neural networks -- GCNs). In this paper, we introduce two novel sources of language-independent information for CEAE models based on the semantic similarity and the universal dependency relations of the word pairs in different languages. We propose to use the two sources of information to produce shared sentence structures to bridge the gap between languages and improve the cross-lingual performance of the CEAE models. Extensive experiments are conducted with Arabic, Chinese, and English to demonstrate the effectiveness of the proposed method for CEAE.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا