يعد استرجاع الكيانات، الذي يهدف إلى إشراف الإزهام إلى الكيانات الكنسية من KBS ضخمة، ضروريا للعديد من المهام في معالجة اللغة الطبيعية.يوضح التقدم المحرز الأخير في استرجاع الكيانات أن هيكل التشفير المزدوج هو إطار قوي وفعال لترشيح المرشحين إذا تم تحديد الكيانات إلا بواسطة الأوصاف.ومع ذلك، فإنهم يتجاهلون العقار الذي يذكرنى أن معاني الكيان تذكر في سياقات مختلفة وترتبط بأجزاء مختلفة من الأوصاف، والتي تعامل على قدم المساواة في الأعمال السابقة.في هذا العمل، نقترح تمثيل كيان متعدد النقود (MURES)، وهو نهج رواية لاسترجاع الكيان الذي يبني تمثيلات متعددة المشاهدات لأوصاف الكيان وتقريب الرأي الأمثل للإشراف عبر طريقة البحث المثيرة.تحقق طريقةنا الأداء الحديثة على Zeshel ويحسن جودة المرشحين في مجموعات بيانات ربط كيان قياسية.
Entity retrieval, which aims at disambiguating mentions to canonical entities from massive KBs, is essential for many tasks in natural language processing. Recent progress in entity retrieval shows that the dual-encoder structure is a powerful and efficient framework to nominate candidates if entities are only identified by descriptions. However, they ignore the property that meanings of entity mentions diverge in different contexts and are related to various portions of descriptions, which are treated equally in previous works. In this work, we propose Multi-View Entity Representations (MuVER), a novel approach for entity retrieval that constructs multi-view representations for entity descriptions and approximates the optimal view for mentions via a heuristic searching method. Our method achieves the state-of-the-art performance on ZESHEL and improves the quality of candidates on three standard Entity Linking datasets.
References used
https://aclanthology.org/
Knowledge graphs (KGs) are widely used to store and access information about entities and their relationships. Given a query, the task of entity retrieval from a KG aims at presenting a ranked list of entities relevant to the query. Lately, an increa
Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks
Claim verification is challenging because it requires first to find textual evidence and then apply claim-evidence entailment to verify a claim. Previous works evaluate the entailment step based on the retrieved evidence, whereas we hypothesize that
Automated fact-checking on a large-scale is a challenging task that has not been studied systematically until recently. Large noisy document collections like the web or news articles make the task more difficult. We describe a three-stage automated f
This research proposes a new way to improve the
search outcome of Arabic semantics by abstractly summarizing the
Arabic texts (Abstractive Summary) using natural language
processing algorithms(NLP),Word Sense Disambiguation (WSD)
and techniques o