Do you want to publish a course? Click here

CoPHE: A Count-Preserving Hierarchical Evaluation Metric in Large-Scale Multi-Label Text Classification

Cophe: تقييم التدريجي الهرمي للحفاظ على العد في تصنيف النص متعدد العلامات على نطاق واسع

525   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Large-Scale Multi-Label Text Classification (LMTC) includes tasks with hierarchical label spaces, such as automatic assignment of ICD-9 codes to discharge summaries. Performance of models in prior art is evaluated with standard precision, recall, and F1 measures without regard for the rich hierarchical structure. In this work we argue for hierarchical evaluation of the predictions of neural LMTC models. With the example of the ICD-9 ontology we describe a structural issue in the representation of the structured label space in prior art, and propose an alternative representation based on the depth of the ontology. We propose a set of metrics for hierarchical evaluation using the depth-based representation. We compare the evaluation scores from the proposed metrics with previously used metrics on prior art LMTC models for ICD-9 coding in MIMIC-III. We also propose further avenues of research involving the proposed ontological representation.



References used
https://aclanthology.org/
rate research

Read More

Hierarchical multi-label text classification (HMTC) deals with the challenging task where an instance can be assigned to multiple hierarchically structured categories at the same time. The majority of prior studies either focus on reducing the HMTC t ask into a flat multi-label problem ignoring the vertical category correlations or exploiting the dependencies across different hierarchical levels without considering the horizontal correlations among categories at the same level, which inevitably leads to fundamental information loss. In this paper, we propose a novel HMTC framework that considers both vertical and horizontal category correlations. Specifically, we first design a loosely coupled graph convolutional neural network as the representation extractor to obtain representations for words, documents, and, more importantly, level-wise representations for categories, which are not considered in previous works. Then, the learned category representations are adopted to capture the vertical dependencies among levels of category hierarchy and model the horizontal correlations. Finally, based on the document embeddings and category embeddings, we design a hybrid algorithm to predict the categories of the entire hierarchical structure. Extensive experiments conducted on real-world HMTC datasets validate the effectiveness of the proposed framework with significant improvements over the baselines.
We study the impact of using rich and diverse textual descriptions of classes for zero-shot learning (ZSL) on ImageNet. We create a new dataset ImageNet-Wiki that matches each ImageNet class to its corresponding Wikipedia article. We show that merely employing these Wikipedia articles as class descriptions yields much higher ZSL performance than prior works. Even a simple model using this type of auxiliary data outperforms state-of-the-art models that rely on standard features of word embedding encodings of class names. These results highlight the usefulness and importance of textual descriptions for ZSL, as well as the relative importance of auxiliary data type compared to the algorithmic progress. Our experimental results also show that standard zero-shot learning approaches generalize poorly across categories of classes.
Current embedding-based large-scale retrieval models are trained with 0-1 hard label that indicates whether a query is relevant to a document, ignoring rich information of the relevance degree. This paper proposes to improve embedding-based retrieval from the perspective of better characterizing the query-document relevance degree by introducing label enhancement (LE) for the first time. To generate label distribution in the retrieval scenario, we design a novel and effective supervised LE method that incorporates prior knowledge from dynamic term weighting methods into contextual embeddings. Our method significantly outperforms four competitive existing retrieval models and its counterparts equipped with two alternative LE techniques by training models with the generated label distribution as auxiliary supervision information. The superiority can be easily observed on English and Chinese large-scale retrieval tasks under both standard and cold-start settings.
In this paper, we introduce a new English Twitter-based dataset for cyberbullying detection and online abuse. Comprising 62,587 tweets, this dataset was sourced from Twitter using specific query terms designed to retrieve tweets with high probabiliti es of various forms of bullying and offensive content, including insult, trolling, profanity, sarcasm, threat, porn and exclusion. We recruited a pool of 17 annotators to perform fine-grained annotation on the dataset with each tweet annotated by three annotators. All our annotators are high school educated and frequent users of social media. Inter-rater agreement for the dataset as measured by Krippendorff's Alpha is 0.67. Analysis performed on the dataset confirmed common cyberbullying themes reported by other studies and revealed interesting relationships between the classes. The dataset was used to train a number of transformer-based deep learning models returning impressive results.
This paper illustrates our approach to the shared task on large-scale multilingual machine translation in the sixth conference on machine translation (WMT-21). In this work, we aim to build a single multilingual translation system with a hypothesis t hat a universal cross-language representation leads to better multilingual translation performance. We extend the exploration of different back-translation methods from bilingual translation to multilingual translation. Better performance is obtained by the constrained sampling method, which is different from the finding of the bilingual translation. Besides, we also explore the effect of vocabularies and the amount of synthetic data. Surprisingly, the smaller size of vocabularies perform better, and the extensive monolingual English data offers a modest improvement. We submitted to both the small tasks and achieve the second place.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا