يتضمن تصنيف النص متعدد العلامات واسعة النطاق (LMTC) مهام مع مسافات تسمية هرمية، مثل التعيين التلقائي لرموز ICD-9 إلى ملخصات التفريغ.يتم تقييم أداء النماذج في الفن السابق مع تدابير الدقة القياسية والتذكر و F1 دون اعتبار للهيكل الهرمي الغني.في هذا العمل، نقول بتقييم هرمي لتنبؤات نماذج LMTC العصبية.مع مثال على علم ICD-9 ontology، نصف مشكلة هيكلية في تمثيل مساحة الملصقات المهيكلة في الفنية السابقة، واقتراح تمثيل بديل بناء على عمق OnTology.نقترح مجموعة من مقاييس التقييم الهرمي باستخدام التمثيل القائم على العمق.قارن درجات التقييم من المقاييس المقترحة مع مقاييس تستخدم سابقا على نماذج LMTC السابقة لترميز ICD-9 في MIMIC-III.كما نقترح أيضا طرق البحث الأخرى التي تنطوي على التمثيل الترطاني المقترح.
Large-Scale Multi-Label Text Classification (LMTC) includes tasks with hierarchical label spaces, such as automatic assignment of ICD-9 codes to discharge summaries. Performance of models in prior art is evaluated with standard precision, recall, and F1 measures without regard for the rich hierarchical structure. In this work we argue for hierarchical evaluation of the predictions of neural LMTC models. With the example of the ICD-9 ontology we describe a structural issue in the representation of the structured label space in prior art, and propose an alternative representation based on the depth of the ontology. We propose a set of metrics for hierarchical evaluation using the depth-based representation. We compare the evaluation scores from the proposed metrics with previously used metrics on prior art LMTC models for ICD-9 coding in MIMIC-III. We also propose further avenues of research involving the proposed ontological representation.
References used
https://aclanthology.org/
Hierarchical multi-label text classification (HMTC) deals with the challenging task where an instance can be assigned to multiple hierarchically structured categories at the same time. The majority of prior studies either focus on reducing the HMTC t
We study the impact of using rich and diverse textual descriptions of classes for zero-shot learning (ZSL) on ImageNet. We create a new dataset ImageNet-Wiki that matches each ImageNet class to its corresponding Wikipedia article. We show that merely
Current embedding-based large-scale retrieval models are trained with 0-1 hard label that indicates whether a query is relevant to a document, ignoring rich information of the relevance degree. This paper proposes to improve embedding-based retrieval
In this paper, we introduce a new English Twitter-based dataset for cyberbullying detection and online abuse. Comprising 62,587 tweets, this dataset was sourced from Twitter using specific query terms designed to retrieve tweets with high probabiliti
This paper illustrates our approach to the shared task on large-scale multilingual machine translation in the sixth conference on machine translation (WMT-21). In this work, we aim to build a single multilingual translation system with a hypothesis t