Do you want to publish a course? Click here

Improving Embedding-based Large-scale Retrieval via Label Enhancement

تحسين الاسترجاع على نطاق واسع في تضمينه عبر تحسين التسمية

476   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Current embedding-based large-scale retrieval models are trained with 0-1 hard label that indicates whether a query is relevant to a document, ignoring rich information of the relevance degree. This paper proposes to improve embedding-based retrieval from the perspective of better characterizing the query-document relevance degree by introducing label enhancement (LE) for the first time. To generate label distribution in the retrieval scenario, we design a novel and effective supervised LE method that incorporates prior knowledge from dynamic term weighting methods into contextual embeddings. Our method significantly outperforms four competitive existing retrieval models and its counterparts equipped with two alternative LE techniques by training models with the generated label distribution as auxiliary supervision information. The superiority can be easily observed on English and Chinese large-scale retrieval tasks under both standard and cold-start settings.



References used
https://aclanthology.org/
rate research

Read More

The embedding-based large-scale query-document retrieval problem is a hot topic in the information retrieval (IR) field. Considering that pre-trained language models like BERT have achieved great success in a wide variety of NLP tasks, we present a Q uadrupletBERT model for effective and efficient retrieval in this paper. Unlike most existing BERT-style retrieval models, which only focus on the ranking phase in retrieval systems, our model makes considerable improvements to the retrieval phase and leverages the distances between simple negative and hard negative instances to obtaining better embeddings. Experimental results demonstrate that our QuadrupletBERT achieves state-of-the-art results in embedding-based large-scale retrieval tasks.
In this paper, we introduce a new English Twitter-based dataset for cyberbullying detection and online abuse. Comprising 62,587 tweets, this dataset was sourced from Twitter using specific query terms designed to retrieve tweets with high probabiliti es of various forms of bullying and offensive content, including insult, trolling, profanity, sarcasm, threat, porn and exclusion. We recruited a pool of 17 annotators to perform fine-grained annotation on the dataset with each tweet annotated by three annotators. All our annotators are high school educated and frequent users of social media. Inter-rater agreement for the dataset as measured by Krippendorff's Alpha is 0.67. Analysis performed on the dataset confirmed common cyberbullying themes reported by other studies and revealed interesting relationships between the classes. The dataset was used to train a number of transformer-based deep learning models returning impressive results.
Large-Scale Multi-Label Text Classification (LMTC) includes tasks with hierarchical label spaces, such as automatic assignment of ICD-9 codes to discharge summaries. Performance of models in prior art is evaluated with standard precision, recall, and F1 measures without regard for the rich hierarchical structure. In this work we argue for hierarchical evaluation of the predictions of neural LMTC models. With the example of the ICD-9 ontology we describe a structural issue in the representation of the structured label space in prior art, and propose an alternative representation based on the depth of the ontology. We propose a set of metrics for hierarchical evaluation using the depth-based representation. We compare the evaluation scores from the proposed metrics with previously used metrics on prior art LMTC models for ICD-9 coding in MIMIC-III. We also propose further avenues of research involving the proposed ontological representation.
We present the ongoing NorLM initiative to support the creation and use of very large contextualised language models for Norwegian (and in principle other Nordic languages), including a ready-to-use software environment, as well as an experience repo rt for data preparation and training. This paper introduces the first large-scale monolingual language models for Norwegian, based on both the ELMo and BERT frameworks. In addition to detailing the training process, we present contrastive benchmark results on a suite of NLP tasks for Norwegian. For additional background and access to the data, models, and software, please see: http://norlm.nlpl.eu
This work demonstrates the development process of a machine learning architecture for inference that can scale to a large volume of requests. We used a BERT model that was fine-tuned for emotion analysis, returning a probability distribution of emoti ons given a paragraph. The model was deployed as a gRPC service on Kubernetes. Apache Spark was used to perform inference in batches by calling the service. We encountered some performance and concurrency challenges and created solutions to achieve faster running time. Starting with 200 successful inference requests per minute, we were able to achieve as high as 18 thousand successful requests per minute with the same batch job resource allocation. As a result, we successfully stored emotion probabilities for 95 million paragraphs within 96 hours.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا