Do you want to publish a course? Click here

Large-Scale Zero-Shot Image Classification from Rich and Diverse Textual Descriptions

تصنيف الصورة صفرية على نطاق واسع من الأوصاف النصية الغنية والمتنوعة

276   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We study the impact of using rich and diverse textual descriptions of classes for zero-shot learning (ZSL) on ImageNet. We create a new dataset ImageNet-Wiki that matches each ImageNet class to its corresponding Wikipedia article. We show that merely employing these Wikipedia articles as class descriptions yields much higher ZSL performance than prior works. Even a simple model using this type of auxiliary data outperforms state-of-the-art models that rely on standard features of word embedding encodings of class names. These results highlight the usefulness and importance of textual descriptions for ZSL, as well as the relative importance of auxiliary data type compared to the algorithmic progress. Our experimental results also show that standard zero-shot learning approaches generalize poorly across categories of classes.



References used
https://aclanthology.org/
rate research

Read More

Large-Scale Multi-Label Text Classification (LMTC) includes tasks with hierarchical label spaces, such as automatic assignment of ICD-9 codes to discharge summaries. Performance of models in prior art is evaluated with standard precision, recall, and F1 measures without regard for the rich hierarchical structure. In this work we argue for hierarchical evaluation of the predictions of neural LMTC models. With the example of the ICD-9 ontology we describe a structural issue in the representation of the structured label space in prior art, and propose an alternative representation based on the depth of the ontology. We propose a set of metrics for hierarchical evaluation using the depth-based representation. We compare the evaluation scores from the proposed metrics with previously used metrics on prior art LMTC models for ICD-9 coding in MIMIC-III. We also propose further avenues of research involving the proposed ontological representation.
Contextual advertising provides advertisers with the opportunity to target the context which is most relevant to their ads. The large variety of potential topics makes it very challenging to collect training documents to build a supervised classifica tion model or compose expert-written rules in a rule-based classification system. Besides, in fine-grained classification, different categories often overlap or co-occur, making it harder to classify accurately. In this work, we propose wiki2cat, a method to tackle large-scaled fine-grained text classification by tapping on the Wikipedia category graph. The categories in the IAB taxonomy are first mapped to category nodes in the graph. Then the label is propagated across the graph to obtain a list of labeled Wikipedia documents to induce text classifiers. The method is ideal for large-scale classification problems since it does not require any manually-labeled document or hand-curated rules or keywords. The proposed method is benchmarked with various learning-based and keyword-based baselines and yields competitive performance on publicly available datasets and a new dataset containing more than 300 fine-grained categories.
We present the ongoing NorLM initiative to support the creation and use of very large contextualised language models for Norwegian (and in principle other Nordic languages), including a ready-to-use software environment, as well as an experience repo rt for data preparation and training. This paper introduces the first large-scale monolingual language models for Norwegian, based on both the ELMo and BERT frameworks. In addition to detailing the training process, we present contrastive benchmark results on a suite of NLP tasks for Norwegian. For additional background and access to the data, models, and software, please see: http://norlm.nlpl.eu
This paper illustrates our approach to the shared task on large-scale multilingual machine translation in the sixth conference on machine translation (WMT-21). In this work, we aim to build a single multilingual translation system with a hypothesis t hat a universal cross-language representation leads to better multilingual translation performance. We extend the exploration of different back-translation methods from bilingual translation to multilingual translation. Better performance is obtained by the constrained sampling method, which is different from the finding of the bilingual translation. Besides, we also explore the effect of vocabularies and the amount of synthetic data. Surprisingly, the smaller size of vocabularies perform better, and the extensive monolingual English data offers a modest improvement. We submitted to both the small tasks and achieve the second place.
This paper describes TenTrans large-scale multilingual machine translation system for WMT 2021. We participate in the Small Track 2 in five South East Asian languages, thirty directions: Javanese, Indonesian, Malay, Tagalog, Tamil, English. We mainly utilized forward/back-translation, in-domain data selection, knowledge distillation, and gradual fine-tuning from the pre-trained model FLORES-101. We find that forward/back-translation significantly improves the translation results, data selection and gradual fine-tuning are particularly effective during adapting domain, while knowledge distillation brings slight performance improvement. Also, model averaging is used to further improve the translation performance based on these systems. Our final system achieves an average BLEU score of 28.89 across thirty directions on the test set.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا