Do you want to publish a course? Click here

Discourse segmentation and sentence-level discourse parsing play important roles for various NLP tasks to consider textual coherence. Despite recent achievements in both tasks, there is still room for improvement due to the scarcity of labeled data. To solve the problem, we propose a language model-based generative classifier (LMGC) for using more information from labels by treating the labels as an input while enhancing label representations by embedding descriptions for each label. Moreover, since this enables LMGC to make ready the representations for labels, unseen in the pre-training step, we can effectively use a pre-trained language model in LMGC. Experimental results on the RST-DT dataset show that our LMGC achieved the state-of-the-art F1 score of 96.72 in discourse segmentation. It further achieved the state-of-the-art relation F1 scores of 84.69 with gold EDU boundaries and 81.18 with automatically segmented boundaries, respectively, in sentence-level discourse parsing.
Hierarchical multi-label text classification (HMTC) deals with the challenging task where an instance can be assigned to multiple hierarchically structured categories at the same time. The majority of prior studies either focus on reducing the HMTC t ask into a flat multi-label problem ignoring the vertical category correlations or exploiting the dependencies across different hierarchical levels without considering the horizontal correlations among categories at the same level, which inevitably leads to fundamental information loss. In this paper, we propose a novel HMTC framework that considers both vertical and horizontal category correlations. Specifically, we first design a loosely coupled graph convolutional neural network as the representation extractor to obtain representations for words, documents, and, more importantly, level-wise representations for categories, which are not considered in previous works. Then, the learned category representations are adopted to capture the vertical dependencies among levels of category hierarchy and model the horizontal correlations. Finally, based on the document embeddings and category embeddings, we design a hybrid algorithm to predict the categories of the entire hierarchical structure. Extensive experiments conducted on real-world HMTC datasets validate the effectiveness of the proposed framework with significant improvements over the baselines.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا