عندما يبرز تقنية إسناد نموذجية جزءا خاصا من المدخلات، قد يفهم المستخدم هذا الضوء على أنه بيان حول Worklactuals (Miller، 2019): إذا كان هذا الجزء من الإدخال هو التغيير، فقد يتغير تنبؤ النموذج أيضا. تحقق هذه الورقة في مدى توافق تقنيات الإسناد المختلفة مع هذا الافتراض على مواجهة بشكل واقعي في حالة قراءة الفهم (RC). RC هي حالة اختبار صعبة بشكل خاص، كأداة مستوية على مستوى الرمز المميز الذي تم دراسته على نطاق واسع في مهام NLP الأخرى مثل تحليل المعرفات أقل مناسبا لتمثيل التفكير الذي تؤدي نماذج RC. نقوم بإنشاء مجموعات مضادة لثلاث إعدادات RC مختلفة، ومن خلال الاستدلال التي يمكنها توصيل نواتج أساليب الإسناد إلى سلوك نموذج رفيع المستوى، يمكننا تقييم مدى فائدة أساليب الإسناد المختلفة وحتى التنسيقات المختلفة لفهم الوسائل المتعددة. نجد أن نسبة الزوجية أكثر ملاءمة بشكل أفضل ل RC من سمات المستوى الرمز المميز عبر هذه الإعدادات المختلفة RC، مع أفضل أدائنا القادم من التعديل الذي نقترحه لطريقة إسناد الزوجية الحالية.
When a model attribution technique highlights a particular part of the input, a user might understand this highlight as making a statement about counterfactuals (Miller, 2019): if that part of the input were to change, the model's prediction might change as well. This paper investigates how well different attribution techniques align with this assumption on realistic counterfactuals in the case of reading comprehension (RC). RC is a particularly challenging test case, as token-level attributions that have been extensively studied in other NLP tasks such as sentiment analysis are less suitable to represent the reasoning that RC models perform. We construct counterfactual sets for three different RC settings, and through heuristics that can connect attribution methods' outputs to high-level model behavior, we can evaluate how useful different attribution methods and even different formats are for understanding counterfactuals. We find that pairwise attributions are better suited to RC than token-level attributions across these different RC settings, with our best performance coming from a modification that we propose to an existing pairwise attribution method.
References used
https://aclanthology.org/
Counterfactuals are a valuable means for understanding decisions made by ML systems. However, the counterfactuals generated by the methods currently available for natural language text are either unrealistic or introduce imperceptible changes. We pro
There is an increasing interest in continuous learning (CL), as data privacy is becoming a priority for real-world machine learning applications. Meanwhile, there is still a lack of academic NLP benchmarks that are applicable for realistic CL setting
Medical question answering (QA) systems have the potential to answer clinicians' uncertainties about treatment and diagnosis on-demand, informed by the latest evidence. However, despite the significant progress in general QA made by the NLP community
Latent Dirichlet allocation (LDA), a widely used topic model, is often employed as a fundamental tool for text analysis in various applications. However, the training process of the LDA model typically requires massive text corpus data. On one hand,
Blast load caused emptying a large amount of energy very quickly parts of the
second causing a significant increase of pressure, in addition to generating high
temperatures because of the high speed often ends local effects of the explosion before