Do you want to publish a course? Click here

Machine Translation Believability

آلة تصرف الترجمة

578   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Successful Machine Translation (MT) deployment requires understanding not only the intrinsic qualities of MT output, such as fluency and adequacy, but also user perceptions. Users who do not understand the source language respond to MT output based on their perception of the likelihood that the meaning of the MT output matches the meaning of the source text. We refer to this as believability. Output that is not believable may be off-putting to users, but believable MT output with incorrect meaning may mislead them. In this work, we study the relationship of believability to fluency and adequacy by applying traditional MT direct assessment protocols to annotate all three features on the output of neural MT systems. Quantitative analysis of these annotations shows that believability is closely related to but distinct from fluency, and initial qualitative analysis suggests that semantic features may account for the difference.



References used
https://aclanthology.org/
rate research

Read More

Several neural-based metrics have been recently proposed to evaluate machine translation quality. However, all of them resort to point estimates, which provide limited information at segment level. This is made worse as they are trained on noisy, bia sed and scarce human judgements, often resulting in unreliable quality predictions. In this paper, we introduce uncertainty-aware MT evaluation and analyze the trustworthiness of the predicted quality. We combine the COMET framework with two uncertainty estimation methods, Monte Carlo dropout and deep ensembles, to obtain quality scores along with confidence intervals. We compare the performance of our uncertainty-aware MT evaluation methods across multiple language pairs from the QT21 dataset and the WMT20 metrics task, augmented with MQM annotations. We experiment with varying numbers of references and further discuss the usefulness of uncertainty-aware quality estimation (without references) to flag possibly critical translation mistakes.
This paper describes the Global Tone Communication Co., Ltd.'s submission of the WMT21 shared news translation task. We participate in six directions: English to/from Hausa, Hindi to/from Bengali and Zulu to/from Xhosa. Our submitted systems are unco nstrained and focus on multilingual translation odel, backtranslation and forward-translation. We also apply rules and language model to filter monolingual, parallel sentences and synthetic sentences.
The performance of NMT systems has improved drastically in the past few years but the translation of multi-sense words still poses a challenge. Since word senses are not represented uniformly in the parallel corpora used for training, there is an exc essive use of the most frequent sense in MT output. In this work, we propose CmBT (Contextually-mined Back-Translation), an approach for improving multi-sense word translation leveraging pre-trained cross-lingual contextual word representations (CCWRs). Because of their contextual sensitivity and their large pre-training data, CCWRs can easily capture word senses that are missing or very rare in parallel corpora used to train MT. Specifically, CmBT applies bilingual lexicon induction on CCWRs to mine sense-specific target sentences from a monolingual dataset, and then back-translates these sentences to generate a pseudo parallel corpus as additional training data for an MT system. We test the translation quality of ambiguous words on the MuCoW test suite, which was built to test the word sense disambiguation effectiveness of MT systems. We show that our system improves on the translation of difficult unseen and low frequency word senses.
This paper describes ANVITA-1.0 MT system, architected for submission to WAT2021 MultiIndicMT shared task by mcairt team, where the team participated in 20 translation directions: English→Indic and Indic→English; Indic set comprised of 10 Indian lang uages. ANVITA-1.0 MT system comprised of two multi-lingual NMT models one for the English→Indic directions and other for the Indic→English directions with shared encoder-decoder, catering 10 language pairs and twenty translation directions. The base models were built based on Transformer architecture and trained over MultiIndicMT WAT 2021 corpora and further employed back translation and transliteration for selective data augmentation, and model ensemble for better generalization. Additionally, MultiIndicMT WAT 2021 corpora was distilled using a series of filtering operations before putting up for training. ANVITA-1.0 achieved highest AM-FM score for English→Bengali, 2nd for English→Tamil and 3rd for English→Hindi, Bengali→English directions on official test set. In general, performance achieved by ANVITA for the Indic→English directions are relatively better than that of English→Indic directions for all the 10 language pairs when evaluated using BLEU and RIBES, although the same trend is not observed consistently when AM-FM based evaluation was carried out. As compared to BLEU, RIBES and AM-FM based scoring placed ANVITA relatively better among all the task participants.
Multilingual neural machine translation (MNMT) learns to translate multiple language pairs with a single model, potentially improving both the accuracy and the memory-efficiency of deployed models. However, the heavy data imbalance between languages hinders the model from performing uniformly across language pairs. In this paper, we propose a new learning objective for MNMT based on distributionally robust optimization, which minimizes the worst-case expected loss over the set of language pairs. We further show how to practically optimize this objective for large translation corpora using an iterated best response scheme, which is both effective and incurs negligible additional computational cost compared to standard empirical risk minimization. We perform extensive experiments on three sets of languages from two datasets and show that our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا