توضح هذه الورقة نظام Anvita-1.0 MT، Architeted for Survision To Wath2021 Multiindicmt Task من فريق Mcairt، حيث شارك الفريق في 20 اتجاهات ترجمة: الإنجليزية → Werc و Indic → الإنجليزية؛ تشدد مجموعة تشل من 10 لغات هندية. نظام Anvita-1.0 MT يتكون من نماذج NMT متعددة اللغات واحد للغة الإنجليزية → اتجاهات MEDISTION وغيرها من الإرشادات وغيرها من الإرشادات الإنجليزية مع فك التشفير المشترك، والتموين 10 أزواج اللغة والعشرون اتجاهي الترجمة. بنيت النماذج الأساسية بناء على بنية المحولات وتدريبها على Multiindicmt Wat 2021 Corpora وزيادة الترجمة والترجمة الترجمة والترجمة الخاصة بتزوير البيانات الانتقائية، وفرقة نموذجية لتحسين التعميم. بالإضافة إلى ذلك، تم تقطير Multiindicmt Wat 2021 Corpora باستخدام سلسلة من عمليات التصفية قبل طرح التدريب. anvita-1.0 حقق أعلى درجة AM-FM النتيجة للغة الإنجليزية → البنغالية، 2nd للغة الإنجليزية → التاميل و 3 للإنجليزية → الهندية، البنغالية → الإنجليزية الاتجاهات في مجموعة الاختبار الرسمية. بشكل عام، فإن الأداء الذي حققه Anvita للتشج ← اتجاهات إنجليزية أفضل نسبيا من أن الإنجليزي → اتجاهات MEDIAL لجميع أزواج اللغة 10 عند تقييمها باستخدام Bleu and Ribes، على الرغم من أن الاتجاه نفسه غير مريح باستمرار عند تقييم AM-FM نفذت. بالمقارنة مع Bleu، فإن RIBES و AM-FM تستند إلى أنفيتا أفضل نسبيا بين جميع المشاركين المهام.
This paper describes ANVITA-1.0 MT system, architected for submission to WAT2021 MultiIndicMT shared task by mcairt team, where the team participated in 20 translation directions: English→Indic and Indic→English; Indic set comprised of 10 Indian languages. ANVITA-1.0 MT system comprised of two multi-lingual NMT models one for the English→Indic directions and other for the Indic→English directions with shared encoder-decoder, catering 10 language pairs and twenty translation directions. The base models were built based on Transformer architecture and trained over MultiIndicMT WAT 2021 corpora and further employed back translation and transliteration for selective data augmentation, and model ensemble for better generalization. Additionally, MultiIndicMT WAT 2021 corpora was distilled using a series of filtering operations before putting up for training. ANVITA-1.0 achieved highest AM-FM score for English→Bengali, 2nd for English→Tamil and 3rd for English→Hindi, Bengali→English directions on official test set. In general, performance achieved by ANVITA for the Indic→English directions are relatively better than that of English→Indic directions for all the 10 language pairs when evaluated using BLEU and RIBES, although the same trend is not observed consistently when AM-FM based evaluation was carried out. As compared to BLEU, RIBES and AM-FM based scoring placed ANVITA relatively better among all the task participants.
References used
https://aclanthology.org/
This paper presents the Bering Lab's submission to the shared tasks of the 8th Workshop on Asian Translation (WAT 2021) on JPC2 and NICT-SAP. We participated in all tasks on JPC2 and IT domain tasks on NICT-SAP. Our approach for all tasks mainly focu
In this paper, we describe our submissions for the Similar Language Translation Shared Task 2021. We built 3 systems in each direction for the Tamil ⇐⇒ Telugu language pair. This paper outlines experiments with various tokenization schemes to train statistical models. We also report the configuration of the submitted systems and results produced by them.
Neural Machine Translation (NMT) is a predominant machine translation technology nowadays because of its end-to-end trainable flexibility. However, NMT still struggles to translate properly in low-resource settings specifically on distant language pa
In this paper, we describe our submissions for LoResMT Shared Task @MT Summit 2021 Conference. We built statistical translation systems in each direction for English ⇐⇒ Marathi language pair. This paper outlines initial baseline experiments with vari
In this paper we describe our submissions to WAT-2021 (Nakazawa et al., 2021) for English-to-Myanmar language (Burmese) task. Our team, ID: YCC-MT1'', focused on bringing transliteration knowledge to the decoder without changing the model. We manuall