تقدم هذه الأوراق منصة لرصد روايات الصحافة فيما يتعلق بالعديد من التحديات الاجتماعية، بما في ذلك المساواة بين الجنسين والهجرة ولغات الأقليات.مع ترميز الروايات بلغة طبيعية، يتعين علينا استخدام تقنيات المعالجة الطبيعية لأتمتة تحليلها.وبالتالي، تتم معالجة الأخبار الزحفة عن طريق العديد من وحدات NLP، بما في ذلك التعرف على الكيان المسمى، واستخراج الكلمات الرئيسية، تصنيف المستندات للكشف عن التحدي الاجتماعي، وتحليل المعنويات.توفر واجهة قوية للقاطرات تصور البيانات للتحليل المستند إلى المستخدم للبيانات.تقدم هذه الورقة بنية النظام وتصف بالتفصيل مكوناتها المختلفة.يتم توفير التقييم للوحدات المتعلقة باستخراج ومعلومات المعلومات المتعلقة بالتحديات الاجتماعية.
This papers presents a platform for monitoring press narratives with respect to several social challenges, including gender equality, migrations and minority languages. As narratives are encoded in natural language, we have to use natural processing techniques to automate their analysis. Thus, crawled news are processed by means of several NLP modules, including named entity recognition, keyword extraction,document classification for social challenge detection, and sentiment analysis. A Flask powered interface provides data visualization for a user-based analysis of the data. This paper presents the architecture of the system and describes in detail its different components. Evaluation is provided for the modules related to extraction and classification of information regarding social challenges.
References used
https://aclanthology.org/
The study deals with the concept, the beginning and the development
phases of digital library explaining the problem of digital idioms. It sheds
light on the requirements and groups of digital library and the technical
processes through indexing a
In this paper we discuss several challenges related to the development of a 3D game, whose goal is to raise awareness on cyberbullying while collecting linguistic annotation on offensive language. The game is meant to be used by teenagers, thus raisi
Abstract Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language,
Being able to generate accurate word alignments is useful for a variety of tasks. While statistical word aligners can work well, especially when parallel training data are plentiful, multilingual embedding models have recently been shown to give good
Large language models (LM) generate remarkably fluent text and can be efficiently adapted across NLP tasks. Measuring and guaranteeing the quality of generated text in terms of safety is imperative for deploying LMs in the real world; to this end, pr