Do you want to publish a course? Click here

GEPSA, a tool for monitoring social challenges in digital press

Gepsa، أداة لرصد التحديات الاجتماعية في الصحافة الرقمية

573   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This papers presents a platform for monitoring press narratives with respect to several social challenges, including gender equality, migrations and minority languages. As narratives are encoded in natural language, we have to use natural processing techniques to automate their analysis. Thus, crawled news are processed by means of several NLP modules, including named entity recognition, keyword extraction,document classification for social challenge detection, and sentiment analysis. A Flask powered interface provides data visualization for a user-based analysis of the data. This paper presents the architecture of the system and describes in detail its different components. Evaluation is provided for the modules related to extraction and classification of information regarding social challenges.



References used
https://aclanthology.org/
rate research

Read More

The study deals with the concept, the beginning and the development phases of digital library explaining the problem of digital idioms. It sheds light on the requirements and groups of digital library and the technical processes through indexing a nd classification. In addition to that, the study discuses the mechanism of digital regaining, and explain the ways of search on digital information clarifying the meaning and the mechanism of Boolean logic in search of information. Finally, the paper views the image of Arabic digital libraries and introduces the most important challenges that faces the Arabic digital libraries in the current time. This study ends up to a set of results and recommendations.
In this paper we discuss several challenges related to the development of a 3D game, whose goal is to raise awareness on cyberbullying while collecting linguistic annotation on offensive language. The game is meant to be used by teenagers, thus raisi ng a number of issues that need to be tackled during development. For example, the game aesthetics should be appealing for players belonging to this age group, but at the same time all possible solutions should be implemented to meet privacy requirements. Also, the task of linguistic annotation should be possibly hidden, adopting so-called orthogonal game mechanics, without affecting the quality of collected data. While some of these challenges are being tackled in the game development, some others are discussed in this paper but still lack an ultimate solution.
Abstract Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks---reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1
Being able to generate accurate word alignments is useful for a variety of tasks. While statistical word aligners can work well, especially when parallel training data are plentiful, multilingual embedding models have recently been shown to give good results in unsupervised scenarios. We evaluate an ensemble method for word alignment on four language pairs and demonstrate that by combining multiple tools, taking advantage of their different approaches, substantial gains can be made. This holds for settings ranging from very low-resource to high-resource. Furthermore, we introduce a new gold alignment test set for Icelandic and a new easy-to-use tool for creating manual word alignments.
Large language models (LM) generate remarkably fluent text and can be efficiently adapted across NLP tasks. Measuring and guaranteeing the quality of generated text in terms of safety is imperative for deploying LMs in the real world; to this end, pr ior work often relies on automatic evaluation of LM toxicity. We critically discuss this approach, evaluate several toxicity mitigation strategies with respect to both automatic and human evaluation, and analyze consequences of toxicity mitigation in terms of model bias and LM quality. We demonstrate that while basic intervention strategies can effectively optimize previously established automatic metrics on the REALTOXICITYPROMPTS dataset, this comes at the cost of reduced LM coverage for both texts about, and dialects of, marginalized groups. Additionally, we find that human raters often disagree with high automatic toxicity scores after strong toxicity reduction interventions---highlighting further the nuances involved in careful evaluation of LM toxicity.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا