Do you want to publish a course? Click here

Zero-Shot Neural Machine Translation with Self-Learning Cycle

الترجمة الآلية العصبية Zero-Shot مع دورة التعلم الذاتي

373   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Neural Machine Translation (NMT) approaches employing monolingual data are showing steady improvements in resource-rich conditions. However, evaluations using real-world lowresource languages still result in unsatisfactory performance. This work proposes a novel zeroshot NMT modeling approach that learns without the now-standard assumption of a pivot language sharing parallel data with the zero-shot source and target languages. Our approach is based on three stages: initialization from any pre-trained NMT model observing at least the target language, augmentation of source sides leveraging target monolingual data, and learning to optimize the initial model to the zero-shot pair, where the latter two constitute a selflearning cycle. Empirical findings involving four diverse (in terms of a language family, script and relatedness) zero-shot pairs show the effectiveness of our approach with up to +5.93 BLEU improvement against a supervised bilingual baseline. Compared to unsupervised NMT, consistent improvements are observed even in a domain-mismatch setting, attesting to the usability of our method.



References used
https://aclanthology.org/
rate research

Read More

Previous work mainly focuses on improving cross-lingual transfer for NLU tasks with a multilingual pretrained encoder (MPE), or improving the performance on supervised machine translation with BERT. However, it is under-explored that whether the MPE can help to facilitate the cross-lingual transferability of NMT model. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with parallel dataset of only one language pair and an off-the-shelf MPE, then it is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. SixT leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. Using this method, SixT significantly outperforms mBART, a pretrained multilingual encoder-decoder model explicitly designed for NMT, with an average improvement of 7.1 BLEU on zero-shot any-to-English test sets across 14 source languages. Furthermore, with much less training computation cost and training data, our model achieves better performance on 15 any-to-English test sets than CRISS and m2m-100, two strong multilingual NMT baselines.
Existing curriculum learning approaches to Neural Machine Translation (NMT) require sampling sufficient amounts of easy'' samples from training data at the early training stage. This is not always achievable for low-resource languages where the amoun t of training data is limited. To address such a limitation, we propose a novel token-wise curriculum learning approach that creates sufficient amounts of easy samples. Specifically, the model learns to predict a short sub-sequence from the beginning part of each target sentence at the early stage of training. Then the sub-sequence is gradually expanded as the training progresses. Such a new curriculum design is inspired by the cumulative effect of translation errors, which makes the latter tokens more challenging to predict than the beginning ones. Extensive experiments show that our approach can consistently outperform baselines on five language pairs, especially for low-resource languages. Combining our approach with sentence-level methods further improves the performance of high-resource languages.
The paper presents experiments in neural machine translation with lexical constraints into a morphologically rich language. In particular and we introduce a method and based on constrained decoding and which handles the inflected forms of lexical ent ries and does not require any modification to the training data or model architecture. To evaluate its effectiveness and we carry out experiments in two different scenarios: general and domain-specific. We compare our method with baseline translation and i.e. translation without lexical constraints and in terms of translation speed and translation quality. To evaluate how well the method handles the constraints and we propose new evaluation metrics which take into account the presence and placement and duplication and inflectional correctness of lexical terms in the output sentence.
Adaptive Machine Translation purports to dynamically include user feedback to improve translation quality. In a post-editing scenario, user corrections of machine translation output are thus continuously incorporated into translation models, reducing or eliminating repetitive error editing and increasing the usefulness of automated translation. In neural machine translation, this goal may be achieved via online learning approaches, where network parameters are updated based on each new sample. This type of adaptation typically requires higher learning rates, which can affect the quality of the models over time. Alternatively, less aggressive online learning setups may preserve model stability, at the cost of reduced adaptation to user-generated corrections. In this work, we evaluate different online learning configurations over time, measuring their impact on user-generated samples, as well as separate in-domain and out-of-domain datasets. Results in two different domains indicate that mixed approaches combining online learning with periodic batch fine-tuning might be needed to balance the benefits of online learning with model stability.
Low-resource Multilingual Neural Machine Translation (MNMT) is typically tasked with improving the translation performance on one or more language pairs with the aid of high-resource language pairs. In this paper and we propose two simple search base d curricula -- orderings of the multilingual training data -- which help improve translation performance in conjunction with existing techniques such as fine-tuning. Additionally and we attempt to learn a curriculum for MNMT from scratch jointly with the training of the translation system using contextual multi-arm bandits. We show on the FLORES low-resource translation dataset that these learned curricula can provide better starting points for fine tuning and improve overall performance of the translation system.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا