Do you want to publish a course? Click here

Zero-Shot Cross-Lingual Transfer of Neural Machine Translation with Multilingual Pretrained Encoders

تحويل صفرية نقل عبر اللغات من الترجمة الآلية العصبية مع التشفير المحددين متعدد اللغات

576   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Previous work mainly focuses on improving cross-lingual transfer for NLU tasks with a multilingual pretrained encoder (MPE), or improving the performance on supervised machine translation with BERT. However, it is under-explored that whether the MPE can help to facilitate the cross-lingual transferability of NMT model. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with parallel dataset of only one language pair and an off-the-shelf MPE, then it is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. SixT leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. Using this method, SixT significantly outperforms mBART, a pretrained multilingual encoder-decoder model explicitly designed for NMT, with an average improvement of 7.1 BLEU on zero-shot any-to-English test sets across 14 source languages. Furthermore, with much less training computation cost and training data, our model achieves better performance on 15 any-to-English test sets than CRISS and m2m-100, two strong multilingual NMT baselines.



References used
https://aclanthology.org/
rate research

Read More

Pre-trained multilingual language encoders, such as multilingual BERT and XLM-R, show great potential for zero-shot cross-lingual transfer. However, these multilingual encoders do not precisely align words and phrases across languages. Especially, le arning alignments in the multilingual embedding space usually requires sentence-level or word-level parallel corpora, which are expensive to be obtained for low-resource languages. An alternative is to make the multilingual encoders more robust; when fine-tuning the encoder using downstream task, we train the encoder to tolerate noise in the contextual embedding spaces such that even if the representations of different languages are not aligned well, the model can still achieve good performance on zero-shot cross-lingual transfer. In this work, we propose a learning strategy for training robust models by drawing connections between adversarial examples and the failure cases of zero-shot cross-lingual transfer. We adopt two widely used robust training methods, adversarial training and randomized smoothing, to train the desired robust model. The experimental results demonstrate that robust training improves zero-shot cross-lingual transfer on text classification tasks. The improvement is more significant in the generalized cross-lingual transfer setting, where the pair of input sentences belong to two different languages.
Multilingual question answering over knowledge graph (KGQA) aims to derive answers from a knowledge graph (KG) for questions in multiple languages. To be widely applicable, we focus on its zero-shot transfer setting. That is, we can only access train ing data in a high-resource language, while need to answer multilingual questions without any labeled data in target languages. A straightforward approach is resorting to pre-trained multilingual models (e.g., mBERT) for cross-lingual transfer, but there is a still significant gap of KGQA performance between source and target languages. In this paper, we exploit unsupervised bilingual lexicon induction (BLI) to map training questions in source language into those in target language as augmented training data, which circumvents language inconsistency between training and inference. Furthermore, we propose an adversarial learning strategy to alleviate syntax-disorder of the augmented data, making the model incline to both language- and syntax-independence. Consequently, our model narrows the gap in zero-shot cross-lingual transfer. Experiments on two multilingual KGQA datasets with 11 zero-resource languages verify its effectiveness.
This paper considers the unsupervised domain adaptation problem for neural machine translation (NMT), where we assume the access to only monolingual text in either the source or target language in the new domain. We propose a cross-lingual data selec tion method to extract in-domain sentences in the missing language side from a large generic monolingual corpus. Our proposed method trains an adaptive layer on top of multilingual BERT by contrastive learning to align the representation between the source and target language. This then enables the transferability of the domain classifier between the languages in a zero-shot manner. Once the in-domain data is detected by the classifier, the NMT model is then adapted to the new domain by jointly learning translation and domain discrimination tasks. We evaluate our cross-lingual data selection method on NMT across five diverse domains in three language pairs, as well as a real-world scenario of translation for COVID-19. The results show that our proposed method outperforms other selection baselines up to +1.5 BLEU score.
This paper studies zero-shot cross-lingual transfer of vision-language models. Specifically, we focus on multilingual text-to-video search and propose a Transformer-based model that learns contextual multilingual multimodal embeddings. Under a zero-s hot setting, we empirically demonstrate that performance degrades significantly when we query the multilingual text-video model with non-English sentences. To address this problem, we introduce a multilingual multimodal pre-training strategy, and collect a new multilingual instructional video dataset (Multi-HowTo100M) for pre-training. Experiments on VTT show that our method significantly improves video search in non-English languages without additional annotations. Furthermore, when multilingual annotations are available, our method outperforms recent baselines by a large margin in multilingual text-to-video search on VTT and VATEX; as well as in multilingual text-to-image search on Multi30K. Our model and Multi-HowTo100M is available at http://github.com/berniebear/Multi-HT100M.
Zero-shot translation, directly translating between language pairs unseen in training, is a promising capability of multilingual neural machine translation (NMT). However, it usually suffers from capturing spurious correlations between the output lan guage and language invariant semantics due to the maximum likelihood training objective, leading to poor transfer performance on zero-shot translation. In this paper, we introduce a denoising autoencoder objective based on pivot language into traditional training objective to improve the translation accuracy on zero-shot directions. The theoretical analysis from the perspective of latent variables shows that our approach actually implicitly maximizes the probability distributions for zero-shot directions. On two benchmark machine translation datasets, we demonstrate that the proposed method is able to effectively eliminate the spurious correlations and significantly outperforms state-of-the-art methods with a remarkable performance. Our code is available at https://github.com/Victorwz/zs-nmt-dae.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا