Do you want to publish a course? Click here

Generative Imagination Elevates Machine Translation

الخيال التوليد يرفع الترجمة الآلية

237   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

There are common semantics shared across text and images. Given a sentence in a source language, whether depicting the visual scene helps translation into a target language? Existing multimodal neural machine translation methods (MNMT) require triplets of bilingual sentence - image for training and tuples of source sentence - image for inference. In this paper, we propose ImagiT, a novel machine translation method via visual imagination. ImagiT first learns to generate visual representation from the source sentence, and then utilizes both source sentence and the imagined representation'' to produce a target translation. Unlike previous methods, it only needs the source sentence at the inference time. Experiments demonstrate that ImagiT benefits from visual imagination and significantly outperforms the text-only neural machine translation baselines. Further analysis reveals that the imagination process in ImagiT helps fill in missing information when performing the degradation strategy.



References used
https://aclanthology.org/
rate research

Read More

We propose a generative framework for simultaneous machine translation. Conventional approaches use a fixed number of source words to translate or learn dynamic policies for the number of source words by reinforcement learning. Here we formulate simu ltaneous translation as a structural sequence-to-sequence learning problem. A latent variable is introduced to model read or translate actions at every time step, which is then integrated out to consider all the possible translation policies. A re-parameterised Poisson prior is used to regularise the policies which allows the model to explicitly balance translation quality and latency. The experiments demonstrate the effectiveness and robustness of the generative framework, which achieves the best BLEU scores given different average translation latencies on benchmark datasets.
Many NLP models operate over sequences of subword tokens produced by hand-crafted tokenization rules and heuristic subword induction algorithms. A simple universal alternative is to represent every computerized text as a sequence of bytes via UTF-8, obviating the need for an embedding layer since there are fewer token types (256) than dimensions. Surprisingly, replacing the ubiquitous embedding layer with one-hot representations of each byte does not hurt performance; experiments on byte-to-byte machine translation from English to 10 different languages show a consistent improvement in BLEU, rivaling character-level and even standard subword-level models. A deeper investigation reveals that the combination of embeddingless models with decoder-input dropout amounts to token dropout, which benefits byte-to-byte models in particular.
This work investigates neural machine translation (NMT) systems for translating English user reviews into Croatian and Serbian, two similar morphologically complex languages. Two types of reviews are used for testing the systems: IMDb movie reviews a nd Amazon product reviews. Two types of training data are explored: large out-of-domain bilingual parallel corpora, as well as small synthetic in-domain parallel corpus obtained by machine translation of monolingual English Amazon reviews into the target languages. Both automatic scores and human evaluation show that using the synthetic in-domain corpus together with a selected sub-set of out-of-domain data is the best option. Separated results on IMDb and Amazon reviews indicate that MT systems perform differently on different review types so that user reviews generally should not be considered as a homogeneous genre. Nevertheless, more detailed research on larger amount of different reviews covering different domains/topics is needed to fully understand these differences.
AbstractMachine translation (MT) technology has facilitated our daily tasks by providing accessible shortcuts for gathering, processing, and communicating information. However, it can suffer from biases that harm users and society at large. As a rela tively new field of inquiry, studies of gender bias in MT still lack cohesion. This advocates for a unified framework to ease future research. To this end, we: i) critically review current conceptualizations of bias in light of theoretical insights from related disciplines, ii) summarize previous analyses aimed at assessing gender bias in MT, iii) discuss the mitigating strategies proposed so far, and iv) point toward potential directions for future work.
The development of Translation Technologies, like Translation Memory and Machine Translation, has completely changed the translation industry and translator's workflow in the last decades. Nevertheless, TM and MT have been developed separately until very recently. This ongoing project will study the external integration of TM and MT, examining if the productivity and post-editing efforts of translators are higher or lower than using only TM. To this end, we will conduct an experiment where Translation students and professional translators will be asked to translate two short texts; then we will check the post-editing efforts (temporal, technical and cognitive efforts) and the quality of the translated texts.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا