إن المشكلات، والمكونات غير المعجمية في الكلام، تلعب دورا حاسما في التفاعل البشري البشري.من الصعب التدريب على النماذج المصممة للاعتراف بالمعلومات المشكلية، وخاصة مشاعر الكلام والأسلوب، بسبب مجموعات البيانات المحدودة المسمى المتاحة.في هذا العمل، نقدم إطارا جديدا يمكن شبكة عصبية لتعلم استخراج السمات المعالجة من الكلام باستخدام البيانات غير المشروح للعاطفة.نقوم بتقييم فائدة المدينات المستفادة على مهام المصب في الاعتراف بالمشاعر والكشف عن أسلوب التحدث، مما يدل على تحسينات كبيرة على الميزات الصوتية السطحية وكذلك على المدينات المستخرجة من مناهج أخرى غير مخالفة.يتيح عملنا أنظمة المستقبل الاستفادة من النازع التضمين المستفاد كمكون منفصل قادر على تسليط الضوء على المكونات المعيارية في الكلام.
Paralinguistics, the non-lexical components of speech, play a crucial role in human-human interaction. Models designed to recognize paralinguistic information, particularly speech emotion and style, are difficult to train because of the limited labeled datasets available. In this work, we present a new framework that enables a neural network to learn to extract paralinguistic attributes from speech using data that are not annotated for emotion. We assess the utility of the learned embeddings on the downstream tasks of emotion recognition and speaking style detection, demonstrating significant improvements over surface acoustic features as well as over embeddings extracted from other unsupervised approaches. Our work enables future systems to leverage the learned embedding extractor as a separate component capable of highlighting the paralinguistic components of speech.
References used
https://aclanthology.org/
This paper deliberates on the process of building the first constituency-to-dependency conversion tool of Turkish. The starting point of this work is a previous study in which 10,000 phrase structure trees were manually transformed into Turkish from
We present a scaffolded discovery learning approach to introducing concepts in a Natural Language Processing course aimed at computer science students at liberal arts institutions. We describe some of the objectives of this approach, as well as prese
We consider the problem of learning to repair erroneous C programs by learning optimal alignments with correct programs. Since the previous approaches fix a single error in a line, it is inevitable to iterate the fixing process until no errors remain
Building NLP systems that serve everyone requires accounting for dialect differences. But dialects are not monolithic entities: rather, distinctions between and within dialects are captured by the presence, absence, and frequency of dozens of dialect
Abstract We introduce Generative Spoken Language Modeling, the task of learning the acoustic and linguistic characteristics of a language from raw audio (no text, no labels), and a set of metrics to automatically evaluate the learned representations