Do you want to publish a course? Click here

Learning Paralinguistic Features from Audiobooks through Style Voice Conversion

تعلم السمات المعالجة من Audiobooks من خلال تحويل الصوت

289   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Paralinguistics, the non-lexical components of speech, play a crucial role in human-human interaction. Models designed to recognize paralinguistic information, particularly speech emotion and style, are difficult to train because of the limited labeled datasets available. In this work, we present a new framework that enables a neural network to learn to extract paralinguistic attributes from speech using data that are not annotated for emotion. We assess the utility of the learned embeddings on the downstream tasks of emotion recognition and speaking style detection, demonstrating significant improvements over surface acoustic features as well as over embeddings extracted from other unsupervised approaches. Our work enables future systems to leverage the learned embedding extractor as a separate component capable of highlighting the paralinguistic components of speech.



References used
https://aclanthology.org/
rate research

Read More

This paper deliberates on the process of building the first constituency-to-dependency conversion tool of Turkish. The starting point of this work is a previous study in which 10,000 phrase structure trees were manually transformed into Turkish from the original PennTreebank corpus. Within the scope of this project, these Turkish phrase structure trees were automatically converted into UD-style dependency structures, using both a rule-based algorithm and a machine learning algorithm specific to the requirements of the Turkish language. The results of both algorithms were compared and the machine learning approach proved to be more accurate than the rule-based algorithm. The output was revised by a team of linguists. The refined versions were taken as gold standard annotations for the evaluation of the algorithms. In addition to its contribution to the UD Project with a large dataset of 10,000 Turkish dependency trees, this project also fulfills the important gap of a Turkish conversion tool, enabling the quick compilation of dependency corpora which can be used for the training of better dependency parsers.
We present a scaffolded discovery learning approach to introducing concepts in a Natural Language Processing course aimed at computer science students at liberal arts institutions. We describe some of the objectives of this approach, as well as prese nting specific ways that four of our discovery-based assignments combine specific natural language processing concepts with broader analytic skills. We argue this approach helps prepare students for many possible future paths involving both application and innovation of NLP technology by emphasizing experimental data navigation, experiment design, and awareness of the complexities and challenges of analysis.
We consider the problem of learning to repair erroneous C programs by learning optimal alignments with correct programs. Since the previous approaches fix a single error in a line, it is inevitable to iterate the fixing process until no errors remain . In this work, we propose a novel sequence-to-sequence learning framework for fixing multiple program errors at a time. We introduce the edit-distance-based data labeling approach for program error correction. Instead of labeling a program repair example by pairing an erroneous program with a line fix, we label the example by paring an erroneous program with an optimal alignment to the corresponding correct program produced by the edit-distance computation. We evaluate our proposed approach on a publicly available dataset (DeepFix dataset) that consists of erroneous C programs submitted by novice programming students. On a set of 6,975 erroneous C programs from the DeepFix dataset, our approach achieves the state-of-the-art result in terms of full repair rate on the DeepFix dataset (without extra data such as compiler error message or additional source codes for pre-training).
Building NLP systems that serve everyone requires accounting for dialect differences. But dialects are not monolithic entities: rather, distinctions between and within dialects are captured by the presence, absence, and frequency of dozens of dialect features in speech and text, such as the deletion of the copula in He ∅ running''. In this paper, we introduce the task of dialect feature detection, and present two multitask learning approaches, both based on pretrained transformers. For most dialects, large-scale annotated corpora for these features are unavailable, making it difficult to train recognizers. We train our models on a small number of minimal pairs, building on how linguists typically define dialect features. Evaluation on a test set of 22 dialect features of Indian English demonstrates that these models learn to recognize many features with high accuracy, and that a few minimal pairs can be as effective for training as thousands of labeled examples. We also demonstrate the downstream applicability of dialect feature detection both as a measure of dialect density and as a dialect classifier.
Abstract We introduce Generative Spoken Language Modeling, the task of learning the acoustic and linguistic characteristics of a language from raw audio (no text, no labels), and a set of metrics to automatically evaluate the learned representations at acoustic and linguistic levels for both encoding and generation. We set up baseline systems consisting of a discrete speech encoder (returning pseudo-text units), a generative language model (trained on pseudo- text), and a speech decoder (generating a waveform from pseudo-text) all trained without supervision and validate the proposed metrics with human evaluation. Across 3 speech encoders (CPC, wav2vec 2.0, HuBERT), we find that the number of discrete units (50, 100, or 200) matters in a task-dependent and encoder- dependent way, and that some combinations approach text-based systems.1

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا