Do you want to publish a course? Click here

Learning How To Learn NLP: Developing Introductory Concepts Through Scaffolded Discovery

تعلم كيفية تعلم NLP: تطوير مفاهيم تمهيدية من خلال اكتشاف السقالات

247   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We present a scaffolded discovery learning approach to introducing concepts in a Natural Language Processing course aimed at computer science students at liberal arts institutions. We describe some of the objectives of this approach, as well as presenting specific ways that four of our discovery-based assignments combine specific natural language processing concepts with broader analytic skills. We argue this approach helps prepare students for many possible future paths involving both application and innovation of NLP technology by emphasizing experimental data navigation, experiment design, and awareness of the complexities and challenges of analysis.



References used
https://aclanthology.org/
rate research

Read More

Natural-language prompts have recently been used to coax pretrained language models into performing other AI tasks, using a fill-in-the-blank paradigm (Petroni et al., 2019) or a few-shot extrapolation paradigm (Brown et al., 2020). For example, lang uage models retain factual knowledge from their training corpora that can be extracted by asking them to fill in the blank'' in a sentential prompt. However, where does this prompt come from? We explore the idea of learning prompts by gradient descent---either fine-tuning prompts taken from previous work, or starting from random initialization. Our prompts consist of soft words,'' i.e., continuous vectors that are not necessarily word type embeddings from the language model. Furthermore, for each task, we optimize a mixture of prompts, learning which prompts are most effective and how to ensemble them. Across multiple English LMs and tasks, our approach hugely outperforms previous methods, showing that the implicit factual knowledge in language models was previously underestimated. Moreover, this knowledge is cheap to elicit: random initialization is nearly as good as informed initialization.
Improving model generalization on held-out data is one of the core objectives in common- sense reasoning. Recent work has shown that models trained on the dataset with superficial cues tend to perform well on the easy test set with superficial cues b ut perform poorly on the hard test set without superficial cues. Previous approaches have resorted to manual methods of encouraging models not to overfit to superficial cues. While some of the methods have improved performance on hard instances, they also lead to degraded performance on easy in- stances. Here, we propose to explicitly learn a model that does well on both the easy test set with superficial cues and the hard test set without superficial cues. Using a meta-learning objective, we learn such a model that improves performance on both the easy test set and the hard test set. By evaluating our models on Choice of Plausible Alternatives (COPA) and Commonsense Explanation, we show that our proposed method leads to improved performance on both the easy test set and the hard test set upon which we observe up to 16.5 percentage points improvement over the baseline.
Paraphrase generation is a longstanding NLP task that has diverse applications on downstream NLP tasks. However, the effectiveness of existing efforts predominantly relies on large amounts of golden labeled data. Though unsupervised endeavors have be en proposed to alleviate this issue, they may fail to generate meaningful paraphrases due to the lack of supervision signals. In this work, we go beyond the existing paradigms and propose a novel approach to generate high-quality paraphrases with data of weak supervision. Specifically, we tackle the weakly-supervised paraphrase generation problem by: (1) obtaining abundant weakly-labeled parallel sentences via retrieval-based pseudo paraphrase expansion; and (2) developing a meta-learning framework to progressively select valuable samples for fine-tuning a pre-trained language model BART on the sentential paraphrasing task. We demonstrate that our approach achieves significant improvements over existing unsupervised approaches, and is even comparable in performance with supervised state-of-the-arts.
We consider the problem of learning to repair erroneous C programs by learning optimal alignments with correct programs. Since the previous approaches fix a single error in a line, it is inevitable to iterate the fixing process until no errors remain . In this work, we propose a novel sequence-to-sequence learning framework for fixing multiple program errors at a time. We introduce the edit-distance-based data labeling approach for program error correction. Instead of labeling a program repair example by pairing an erroneous program with a line fix, we label the example by paring an erroneous program with an optimal alignment to the corresponding correct program produced by the edit-distance computation. We evaluate our proposed approach on a publicly available dataset (DeepFix dataset) that consists of erroneous C programs submitted by novice programming students. On a set of 6,975 erroneous C programs from the DeepFix dataset, our approach achieves the state-of-the-art result in terms of full repair rate on the DeepFix dataset (without extra data such as compiler error message or additional source codes for pre-training).
For each goal-oriented dialog task of interest, large amounts of data need to be collected for end-to-end learning of a neural dialog system. Collecting that data is a costly and time-consuming process. Instead, we show that we can use only a small a mount of data, supplemented with data from a related dialog task. Naively learning from related data fails to improve performance as the related data can be inconsistent with the target task. We describe a meta-learning based method that selectively learns from the related dialog task data. Our approach leads to significant accuracy improvements in an example dialog task.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا