Do you want to publish a course? Click here

MultiFix: Learning to Repair Multiple Errors by Optimal Alignment Learning

Multifix: تعلم إصلاح أخطاء متعددة من خلال تعلم المحاذاة الأمثل

487   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We consider the problem of learning to repair erroneous C programs by learning optimal alignments with correct programs. Since the previous approaches fix a single error in a line, it is inevitable to iterate the fixing process until no errors remain. In this work, we propose a novel sequence-to-sequence learning framework for fixing multiple program errors at a time. We introduce the edit-distance-based data labeling approach for program error correction. Instead of labeling a program repair example by pairing an erroneous program with a line fix, we label the example by paring an erroneous program with an optimal alignment to the corresponding correct program produced by the edit-distance computation. We evaluate our proposed approach on a publicly available dataset (DeepFix dataset) that consists of erroneous C programs submitted by novice programming students. On a set of 6,975 erroneous C programs from the DeepFix dataset, our approach achieves the state-of-the-art result in terms of full repair rate on the DeepFix dataset (without extra data such as compiler error message or additional source codes for pre-training).



References used
https://aclanthology.org/
rate research

Read More

We study a new problem of cross-lingual transfer learning for event coreference resolution (ECR) where models trained on data from a source language are adapted for evaluations in different target languages. We introduce the first baseline model for this task based on XLM-RoBERTa, a state-of-the-art multilingual pre-trained language model. We also explore language adversarial neural networks (LANN) that present language discriminators to distinguish texts from the source and target languages to improve the language generalization for ECR. In addition, we introduce two novel mechanisms to further enhance the general representation learning of LANN, featuring: (i) multi-view alignment to penalize cross coreference-label alignment of examples in the source and target languages, and (ii) optimal transport to select close examples in the source and target languages to provide better training signals for the language discriminators. Finally, we perform extensive experiments for cross-lingual ECR from English to Spanish and Chinese to demonstrate the effectiveness of the proposed methods.
We present a scaffolded discovery learning approach to introducing concepts in a Natural Language Processing course aimed at computer science students at liberal arts institutions. We describe some of the objectives of this approach, as well as prese nting specific ways that four of our discovery-based assignments combine specific natural language processing concepts with broader analytic skills. We argue this approach helps prepare students for many possible future paths involving both application and innovation of NLP technology by emphasizing experimental data navigation, experiment design, and awareness of the complexities and challenges of analysis.
Non-autoregressive neural machine translation (NART) models suffer from the multi-modality problem which causes translation inconsistency such as token repetition. Most recent approaches have attempted to solve this problem by implicitly modeling dep endencies between outputs. In this paper, we introduce AligNART, which leverages full alignment information to explicitly reduce the modality of the target distribution. AligNART divides the machine translation task into (i) alignment estimation and (ii) translation with aligned decoder inputs, guiding the decoder to focus on simplified one-to-one translation. To alleviate the alignment estimation problem, we further propose a novel alignment decomposition method. Our experiments show that AligNART outperforms previous non-iterative NART models that focus on explicit modality reduction on WMT14 En↔De and WMT16 Ro→En. Furthermore, AligNART achieves BLEU scores comparable to those of the state-of-the-art connectionist temporal classification based models on WMT14 En↔De. We also observe that AligNART effectively addresses the token repetition problem even without sequence-level knowledge distillation.
Non-autoregressive Transformer is a promising text generation model. However, current non-autoregressive models still fall behind their autoregressive counterparts in translation quality. We attribute this accuracy gap to the lack of dependency model ing among decoder inputs. In this paper, we propose CNAT, which learns implicitly categorical codes as latent variables into the non-autoregressive decoding. The interaction among these categorical codes remedies the missing dependencies and improves the model capacity. Experiment results show that our model achieves comparable or better performance in machine translation tasks than several strong baselines.
Improving model generalization on held-out data is one of the core objectives in common- sense reasoning. Recent work has shown that models trained on the dataset with superficial cues tend to perform well on the easy test set with superficial cues b ut perform poorly on the hard test set without superficial cues. Previous approaches have resorted to manual methods of encouraging models not to overfit to superficial cues. While some of the methods have improved performance on hard instances, they also lead to degraded performance on easy in- stances. Here, we propose to explicitly learn a model that does well on both the easy test set with superficial cues and the hard test set without superficial cues. Using a meta-learning objective, we learn such a model that improves performance on both the easy test set and the hard test set. By evaluating our models on Choice of Plausible Alternatives (COPA) and Commonsense Explanation, we show that our proposed method leads to improved performance on both the easy test set and the hard test set upon which we observe up to 16.5 percentage points improvement over the baseline.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا