Do you want to publish a course? Click here

jurBERT: A Romanian BERT Model for Legal Judgement Prediction

جوربرت: نموذج برت روماني لتنبؤ الحكم القانوني

337   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Transformer-based models have become the de facto standard in the field of Natural Language Processing (NLP). By leveraging large unlabeled text corpora, they enable efficient transfer learning leading to state-of-the-art results on numerous NLP tasks. Nevertheless, for low resource languages and highly specialized tasks, transformer models tend to lag behind more classical approaches (e.g. SVM, LSTM) due to the lack of aforementioned corpora. In this paper we focus on the legal domain and we introduce a Romanian BERT model pre-trained on a large specialized corpus. Our model outperforms several strong baselines for legal judgement prediction on two different corpora consisting of cases from trials involving banks in Romania.



References used
https://aclanthology.org/
rate research

Read More

Recognition of named entities present in text is an important step towards information extraction and natural language understanding. This work presents a named entity recognition system for the Romanian legal domain. The system makes use of the gold annotated LegalNERo corpus. Furthermore, the system combines multiple distributional representations of words, including word embeddings trained on a large legal domain corpus. All the resources, including the corpus, model and word embeddings are open sourced. Finally, the best system is available for direct usage in the RELATE platform.
Dialect identification is a task with applicability in a vast array of domains, ranging from automatic speech recognition to opinion mining. This work presents our architectures used for the VarDial 2021 Romanian Dialect Identification subtask. We in troduced a series of solutions based on Romanian or multilingual Transformers, as well as adversarial training techniques. At the same time, we experimented with a knowledge distillation tool in order to check whether a smaller model can maintain the performance of our best approach. Our best solution managed to obtain a weighted F1-score of 0.7324, allowing us to obtain the 2nd place on the leaderboard.
Language models have proven to be very useful when adapted to specific domains. Nonetheless, little research has been done on the adaptation of domain-specific BERT models in the French language. In this paper, we focus on creating a language model a dapted to French legal text with the goal of helping law professionals. We conclude that some specific tasks do not benefit from generic language models pre-trained on large amounts of data. We explore the use of smaller architectures in domain-specific sub-languages and their benefits for French legal text. We prove that domain-specific pre-trained models can perform better than their equivalent generalised ones in the legal domain. Finally, we release JuriBERT, a new set of BERT models adapted to the French legal domain.
In this paper we propose a contextual attention based model with two-stage fine-tune training using RoBERTa. First, we perform the first-stage fine-tune on corpus with RoBERTa, so that the model can learn some prior domain knowledge. Then we get the contextual embedding of context words based on the token-level embedding with the fine-tuned model. And we use Kfold cross-validation to get K models and ensemble them to get the final result. Finally, we attain the 2nd place in the final evaluation phase of sub-task 2 with pearson correlation of 0.8575.
This paper describes our submission for the WASSA 2021 shared task regarding the prediction of empathy, distress and emotions from news stories. The solution is based on combining the frequency of words, lexicon-based information, demographics of the annotators and personality of the annotators into a linear model. The prediction of empathy and distress is performed using Linear Regression while the prediction of emotions is performed using Logistic Regression. Both tasks are performed using the same features. Our models rank 4th for the prediction of emotions and 2nd for the prediction of empathy and distress. These results are particularly interesting when considered that the computational requirements of the solution are minimal.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا