Do you want to publish a course? Click here

JuriBERT: A Masked-Language Model Adaptation for French Legal Text

Juribert: التكيف النموذجي اللغوي المصنوع من النص القانوني الفرنسي

318   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Language models have proven to be very useful when adapted to specific domains. Nonetheless, little research has been done on the adaptation of domain-specific BERT models in the French language. In this paper, we focus on creating a language model adapted to French legal text with the goal of helping law professionals. We conclude that some specific tasks do not benefit from generic language models pre-trained on large amounts of data. We explore the use of smaller architectures in domain-specific sub-languages and their benefits for French legal text. We prove that domain-specific pre-trained models can perform better than their equivalent generalised ones in the legal domain. Finally, we release JuriBERT, a new set of BERT models adapted to the French legal domain.



References used
https://aclanthology.org/
rate research

Read More

In Arabic Language, diacritics are used to specify meanings as well as pronunciations. However, diacritics are often omitted from written texts, which increases the number of possible meanings and pronunciations. This leads to an ambiguous text and m akes the computational process on undiacritized text more difficult. In this paper, we propose a Linguistic Attentional Model for Arabic text Diacritization (LAMAD). In LAMAD, a new linguistic feature representation is presented, which utilizes both word and character contextual features. Then, a linguistic attention mechanism is proposed to capture the important linguistic features. In addition, we explore the impact of the linguistic features extracted from the text on Arabic text diacritization (ATD) by introducing them to the linguistic attention mechanism. The extensive experimental results on three datasets with different sizes illustrate that LAMAD outperforms the existing state-of-the-art models.
Causal inference is the process of capturing cause-effect relationship among variables. Most existing works focus on dealing with structured data, while mining causal relationship among factors from unstructured data, like text, has been less examine d, but is of great importance, especially in the legal domain. In this paper, we propose a novel Graph-based Causal Inference (GCI) framework, which builds causal graphs from fact descriptions without much human involvement and enables causal inference to facilitate legal practitioners to make proper decisions. We evaluate the framework on a challenging similar charge disambiguation task. Experimental results show that GCI can capture the nuance from fact descriptions among multiple confusing charges and provide explainable discrimination, especially in few-shot settings. We also observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.
The application of predictive coding techniques to legal texts has the potential to greatly reduce the cost of legal review of documents, however, there is such a wide array of legal tasks and continuously evolving legislation that it is hard to cons truct sufficient training data to cover all cases. In this paper, we investigate few-shot and zero-shot approaches that require substantially less training data and introduce a triplet architecture, which for promissory statements produces performance close to that of a supervised system. This method allows predictive coding methods to be rapidly developed for new regulations and markets.
Transformer-based models have become the de facto standard in the field of Natural Language Processing (NLP). By leveraging large unlabeled text corpora, they enable efficient transfer learning leading to state-of-the-art results on numerous NLP task s. Nevertheless, for low resource languages and highly specialized tasks, transformer models tend to lag behind more classical approaches (e.g. SVM, LSTM) due to the lack of aforementioned corpora. In this paper we focus on the legal domain and we introduce a Romanian BERT model pre-trained on a large specialized corpus. Our model outperforms several strong baselines for legal judgement prediction on two different corpora consisting of cases from trials involving banks in Romania.
Older legal texts are often scanned and digitized via Optical Character Recognition (OCR), which results in numerous errors. Although spelling and grammar checkers can correct much of the scanned text automatically, Named Entity Recognition (NER) is challenging, making correction of names difficult. To solve this, we developed an ensemble language model using a transformer neural network architecture combined with a finite state machine to extract names from English-language legal text. We use the US-based English language Harvard Caselaw Access Project for training and testing. Then, the extracted names are subjected to heuristic textual analysis to identify errors, make corrections, and quantify the extent of problems. With this system, we are able to extract most names, automatically correct numerous errors and identify potential mistakes that can later be reviewed for manual correction.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا