أثبتت نماذج اللغة أنها مفيدة للغاية عند تكييفها مع مجالات محددة.ومع ذلك، تم إجراء القليل من الأبحاث على تكيف نماذج بيرت الخاصة بالمجال في اللغة الفرنسية.في هذه الورقة، نركز على إنشاء نموذج لغة تتكيف مع النص القانوني الفرنسي بهدف مساعدة محترفي القانون.نستنتج أن بعض المهام المحددة لا تستفيد من نماذج اللغة العامة المدربة مسبقا على كميات كبيرة من البيانات.نستكشف استخدام الهندسة الصغيرة في اللغات الفرعية الخاصة بالمجال ومزاياها للنص القانوني الفرنسي.نثبت أن النماذج المحددة مسبقا للمجال يمكن أن تؤدي أفضل من تلك المعادلة المكافئة في المجال القانوني.أخيرا، نطلق سراح جوريبارت، مجموعة جديدة من نماذج بيرت تتكيف مع المجال القانوني الفرنسي.
Language models have proven to be very useful when adapted to specific domains. Nonetheless, little research has been done on the adaptation of domain-specific BERT models in the French language. In this paper, we focus on creating a language model adapted to French legal text with the goal of helping law professionals. We conclude that some specific tasks do not benefit from generic language models pre-trained on large amounts of data. We explore the use of smaller architectures in domain-specific sub-languages and their benefits for French legal text. We prove that domain-specific pre-trained models can perform better than their equivalent generalised ones in the legal domain. Finally, we release JuriBERT, a new set of BERT models adapted to the French legal domain.
References used
https://aclanthology.org/
In Arabic Language, diacritics are used to specify meanings as well as pronunciations. However, diacritics are often omitted from written texts, which increases the number of possible meanings and pronunciations. This leads to an ambiguous text and m
Causal inference is the process of capturing cause-effect relationship among variables. Most existing works focus on dealing with structured data, while mining causal relationship among factors from unstructured data, like text, has been less examine
The application of predictive coding techniques to legal texts has the potential to greatly reduce the cost of legal review of documents, however, there is such a wide array of legal tasks and continuously evolving legislation that it is hard to cons
Transformer-based models have become the de facto standard in the field of Natural Language Processing (NLP). By leveraging large unlabeled text corpora, they enable efficient transfer learning leading to state-of-the-art results on numerous NLP task
Older legal texts are often scanned and digitized via Optical Character Recognition (OCR), which results in numerous errors. Although spelling and grammar checkers can correct much of the scanned text automatically, Named Entity Recognition (NER) is