التعرف على الكيانات المسماة الحالية في النص هو خطوة مهمة نحو استخراج المعلومات وفهم اللغة الطبيعية.يعرض هذا العمل نظام التعرف على الكيان المسمى للنشاط القانوني الروماني.يستفيد النظام من Corpus Gold Legalnero المشروح.علاوة على ذلك، يجمع النظام بين العديد من العروض التوزيعية للكلمات، بما في ذلك Word Ageddings المدربين على كوربوس مجال قانوني كبير.جميع الموارد، بما في ذلك Corpus، النموذج و Adgeddings مفتوحة مفتوحة.أخيرا، يتوفر أفضل نظام للاستخدام المباشر في منصة Relale.
Recognition of named entities present in text is an important step towards information extraction and natural language understanding. This work presents a named entity recognition system for the Romanian legal domain. The system makes use of the gold annotated LegalNERo corpus. Furthermore, the system combines multiple distributional representations of words, including word embeddings trained on a large legal domain corpus. All the resources, including the corpus, model and word embeddings are open sourced. Finally, the best system is available for direct usage in the RELATE platform.
References used
https://aclanthology.org/
Older legal texts are often scanned and digitized via Optical Character Recognition (OCR), which results in numerous errors. Although spelling and grammar checkers can correct much of the scanned text automatically, Named Entity Recognition (NER) is
Current work in named entity recognition (NER) shows that data augmentation techniques can produce more robust models. However, most existing techniques focus on augmenting in-domain data in low-resource scenarios where annotated data is quite limite
Cross-domain Named Entity Recognition (NER) transfers the NER knowledge from high-resource domains to the low-resource target domain. Due to limited labeled resources and domain shift, cross-domain NER is a challenging task. To address these challeng
The domain-specialised application of Named Entity Recognition (NER) is known as Biomedical NER (BioNER), which aims to identify and classify biomedical concepts that are of interest to researchers, such as genes, proteins, chemical compounds, drugs,
Named entity disambiguation (NED), which involves mapping textual mentions to structured entities, is particularly challenging in the medical domain due to the presence of rare entities. Existing approaches are limited by the presence of coarse-grain